Deep-Reinforcement-Learning-Based Driving Policy at Intersections Utilizing Lane Graph Networks

被引:0
|
作者
Liu, Yuqi [1 ,2 ]
Zhang, Qichao [1 ,2 ]
Gao, Yinfeng [3 ,4 ]
Zhao, Dongbin [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[3] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
[4] Minist Educ, Key Lab Knowledge Automat Ind Proc, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Navigation; Roads; Autonomous vehicles; Training; Task analysis; Vectors; Autonomous driving; intersection navigating; reinforcement learning;
D O I
10.1109/TCDS.2024.3384269
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Learning an efficient and safe driving strategy in a traffic-heavy intersection scenario and generalizing it to different intersections remains a challenging task for autonomous driving. This is because there are differences in the structure of roads at different intersections, and autonomous vehicles need to generalize the strategies they have learned in the training environments. This requires the autonomous vehicle to capture not only the interactions between agents but also the relationships between agents and the map effectively. To address this challenge, we present a technique that integrates the information of high-definition (HD) maps and traffic participants into vector representations, called lane graph vectorization (LGV). In order to construct a driving policy for intersection navigation, we incorporate LGV into the twin-delayed deep deterministic policy gradient (TD3) algorithm with prioritized experience replay (PER). To train and validate the proposed algorithm, we construct a gym environment for intersection navigation within the high-fidelity CARLA simulator, integrating dense interactive traffic flow and various generalization test intersection scenarios. Experimental results demonstrate the effectiveness of LGV for intersection navigation tasks and outperform the state-of-the-art in our proposed scenarios.
引用
收藏
页码:1759 / 1774
页数:16
相关论文
共 50 条
  • [21] Compressing Deep Reinforcement Learning Networks With a Dynamic Structured Pruning Method for Autonomous Driving
    Su, Wensheng
    Li, Zhenni
    Xu, Minrui
    Kang, Jiawen
    Niyato, Dusit
    Xie, Shengli
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (12) : 18017 - 18030
  • [22] A Deep-Reinforcement-Learning-Based Computation Offloading With Mobile Vehicles in Vehicular Edge Computing
    Lin, Jie
    Huang, Siqi
    Zhang, Hanlin
    Yang, Xinyu
    Zhao, Peng
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (17) : 15501 - 15514
  • [23] Deep-Reinforcement-Learning-Based Offloading Scheduling for Vehicular Edge Computing
    Zhan, Wenhan
    Luo, Chunbo
    Wang, Jin
    Wang, Chao
    Min, Geyong
    Duan, Hancong
    Zhu, Qingxin
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (06) : 5449 - 5465
  • [24] Automatic Virtual Network Embedding: A Deep Reinforcement Learning Approach With Graph Convolutional Networks
    Yan, Zhongxia
    Ge, Jingguo
    Wu, Yulei
    Li, Liangxiong
    Li, Tong
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (06) : 1040 - 1057
  • [25] Deep-Reinforcement-Learning-Based Computation Offloading in UAV-Assisted Vehicular Edge Computing Networks
    Yan, Junjie
    Zhao, Xiaohui
    Li, Zan
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 19882 - 19897
  • [26] Deep reinforcement-learning-based driving policy for autonomous road vehicles
    Makantasis, Konstantinos
    Kontorinaki, Maria
    Nikolos, Ioannis
    IET INTELLIGENT TRANSPORT SYSTEMS, 2020, 14 (01) : 13 - 24
  • [27] Deep Reinforcement Learning Enabled Decision-Making for Autonomous Driving at Intersections
    Guofa Li
    Shenglong Li
    Shen Li
    Yechen Qin
    Dongpu Cao
    Xingda Qu
    Bo Cheng
    Automotive Innovation, 2020, 3 : 374 - 385
  • [28] Deep Reinforcement Learning Enabled Decision-Making for Autonomous Driving at Intersections
    Li, Guofa
    Li, Shenglong
    Li, Shen
    Qin, Yechen
    Cao, Dongpu
    Qu, Xingda
    Cheng, Bo
    AUTOMOTIVE INNOVATION, 2020, 3 (04) : 374 - 385
  • [29] Multi-Input Autonomous Driving Based on Deep Reinforcement Learning With Double Bias Experience Replay
    Cui, Jianping
    Yuan, Liang
    He, Li
    Xiao, Wendong
    Ran, Teng
    Zhang, Jianbo
    IEEE SENSORS JOURNAL, 2023, 23 (11) : 11253 - 11261
  • [30] Deep Reinforcement Learning With Graph Representation for Vehicle Repositioning
    Yu, Zishun
    Hu, Mengqi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (08) : 13094 - 13107