Biochar improves water and nitrogen use efficiency of cotton under mulched drip irrigation in arid regions

被引:4
|
作者
Han, Yue [1 ,2 ,3 ,4 ]
Zhang, Jinzhu [1 ,2 ,3 ,4 ]
Chen, Pengpeng [1 ,2 ,3 ,4 ]
Li, Haiqiang [1 ,2 ,3 ,4 ]
Li, Wenhao [1 ,2 ,3 ,4 ]
Liu, Jian [1 ,2 ,3 ,4 ]
Zong, Rui [5 ]
Wang, Dongwang [1 ,2 ,3 ,4 ]
Liang, Yonghui [1 ,2 ,3 ,4 ]
Wang, Zhenhua [1 ,2 ,3 ,4 ]
机构
[1] Shihezi Univ, Coll Water Conservancy & Architectural Engn, Shihezi 832000, Xinjiang, Peoples R China
[2] Shihezi Univ, Key Lab Modern Water Saving Irrigat Xinjiang Prod, Shihezi 832000, Xinjiang, Peoples R China
[3] Xinjiang Prod & Construct Grp, Technol Innovat Ctr Agr Water & Fertilizer Efficie, Beijing, Peoples R China
[4] Minist Agr & Rural Affairs, Key Lab Northwest Oasis Water Saving Agr, Shihezi, Peoples R China
[5] Shandong Agr Univ, Coll Water Conservancy & Civil Engn, Tai An 271018, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Biochar application rate; Hydrothermal characteristics; Soil inorganic nitrogen; Crop water productivity; Crop N uptake; NUTRIENT AVAILABILITY; SOIL-TEMPERATURE; SLUDGE BIOCHAR; COASTAL SOIL; YIELD; GROWTH; PRODUCTIVITY; CAPACITY; DYNAMICS; MOISTURE;
D O I
10.1016/j.indcrop.2024.119830
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Soil degradation and water scarcity constitute critical impediments to crop production in arid regions. The innovation of efficient resource utilization technology is necessary for agricultural development in arid regions. While biochar application's effects on enhancing soil quality and promoting crop growth have been well documented, the mechanism of biochar application under mulching drip irrigation in cotton field to improve soil hydrothermal environment and then to promote cotton production is unclear. To explore the effects of different amounts of biochar application on soil hydrothermal characteristics, cotton yield, and water-nitrogen utilization efficiency in cotton field under mulched drip irrigation. The experiment encompassed five rates of biochar applications: B1 (20 Mg ha- 1), B2 (40 Mg ha- 1), B3 (60 Mg ha- 1), B4 (80 Mg ha- 1) and CK (0 Mg ha- 1). Compared to CK, the application of biochar could increase soil water storage, soil accumulated active temperature and soil inorganic nitrogen in the top 40 cm of soil. The crop water productivity, crop N uptake, nitrogen partial factor productivity and cotton yield increased by 2.49-13.39 %, 2.66-15.30 %, 3.43-12.00 % and 3.41-11.98 % in treatments with biochar applications, respectively. Besides, the crop N uptake was closely related to cotton yield, which was stemmed from the improvement of soil water storage and soil active accumulated temperature by biochar application, and therefore an increase of the soil inorganic nitrogen content. According to the dualobjective regression analysis of cotton water productivity and cotton N uptake, the optimal biochar application rate was 42.42 Mg ha- 1. The results highlighted that further increasing water and fertilizer use efficiency is feasible under optimized biochar application rate to promote agriculture development in arid regions.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Effect of the interaction of water and nitrogen on sunflower under drip irrigation in an arid region
    Kiani, Mina
    Gheysari, Mandi
    Mostafazadeh-Fard, Behrouz
    Majidi, Mohammad Mandi
    Karchani, Kazem
    Hoogenboom, Gerrit
    AGRICULTURAL WATER MANAGEMENT, 2016, 171 : 162 - 172
  • [32] Improving cotton productivity and nutrient use efficiency by partially replacing chemical fertilizers with organic liquid fertilizer under mulched drip irrigation
    Shi, Xiaojuan
    Hao, Xianzhe
    Shi, Feng
    Li, Nannan
    Tian, Yu
    Han, Peng
    Wang, Jun
    Liu, Ping
    Luo, Honghai
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 216
  • [33] Spatial distribution of soil moisture, soil salinity, and root density beneath a cotton field under mulched drip irrigation with brackish and fresh water
    Chen, Wenling
    Jin, Menggui
    Ferre, Ty P. A.
    Liu, Yanfeng
    Xian, Yang
    Shan, Tianrui
    Ping, Xue
    FIELD CROPS RESEARCH, 2018, 215 : 207 - 221
  • [34] Response of yield, quality, water and nitrogen use efficiency of tomato to different levels of water and nitrogen under drip irrigation in Northwestern China
    Du Ya-dan
    Cao Hong-xia
    Liu Shi-quan
    Gu Xiao-bo
    Cao Yu-xin
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2017, 16 (05) : 1153 - 1161
  • [35] WATER REQUIREMENTS AND WATER USE EFFICIENCY OF CARROT UNDER DRIP IRRIGATION IN A HAPLOXERAND SOIL
    Quezada, C.
    Fischer, S.
    Campos, J.
    Ardiles, D.
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2011, 11 (01) : 16 - 28
  • [36] Effects of brackish water irrigation on the physiological characteristics, yield and quality of mulched drip irrigation cotton under different soil textures
    Wang Z.
    Wang F.
    Lyu D.
    Liu J.
    Zhu Y.
    Wen Y.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2023, 39 (24): : 69 - 78
  • [37] Application of deep learning based on thermal images to identify the water stress in cotton under film-mulched drip irrigation
    Jin, Kaijun
    Zhang, Jihong
    Wang, Zhenhua
    Zhang, Jinzhu
    Liu, Ningning
    Li, Miao
    Ma, Zhanli
    AGRICULTURAL WATER MANAGEMENT, 2024, 299
  • [38] Spatial distribution and simulation of soil moisture and salinity under mulched drip irrigation combined with tillage in an arid saline irrigation district, northwest China
    Qi, Zhijuan
    Feng, Hao
    Zhao, Ying
    Zhang, Tibin
    Yang, Aizheng
    Zhang, Zhongxue
    AGRICULTURAL WATER MANAGEMENT, 2018, 201 : 219 - 231
  • [39] The soil-water flow system beneath a cotton field in arid north-west China, serviced by mulched drip irrigation using brackish water
    Li, Xianwen
    Jin, Menggui
    Huang, Jinou
    Yuan, Jingjing
    HYDROGEOLOGY JOURNAL, 2015, 23 (01) : 35 - 46
  • [40] Blue panic-alfalfa combination as affected by irrigation water regimes and forage mixing ratio under subsurface drip irrigation in arid regions
    Al-Shareef, Abdulmohsin R.
    Ismail, Saleh M.
    El-Nakhlawy, Fathy S.
    GRASSLAND SCIENCE, 2018, 64 (04) : 234 - 244