Dulcitol/Starch Systems as Shape-Stabilized Phase Change Materials for Long-Term Thermal Energy Storage

被引:0
作者
Szatkowska, Martyna [1 ]
Pielichowska, Kinga [1 ]
机构
[1] AGH Univ Krakow, Fac Mat Sci & Ceram, Dept Biomat & Composites, Al Mickiewicza 30, PL-30059 Krakow, Poland
关键词
shape stable phase change materials (SSPCM); dulcitol; sugar alcohol; long-term thermal energy storage; SUGAR ALCOHOLS; DEGREES-C; TEMPERATURES; PERFORMANCE; COMPOSITE; MIXTURES; BLENDS; SEM; PCM;
D O I
10.3390/polym16223229
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In recent years, there has been an increasing interest in phase change materials (PCM) based on dulcitol and other sugar alcohols. These materials have almost twice as large latent heat of fusion as other organic materials. Sugar alcohols are relatively cheap, and they can undergo cold crystallization, which is crucial for long-term thermal energy storage. The disadvantage of dulcitol and other sugar alcohols is the solid-liquid phase transition. As a result, the state of matter of the material and its volume change, and in the case of materials modified with microparticles or nanoparticles, sedimentation of additives in liquid PCM can occur. In this study, we obtained shape-stable phase change materials (SSPCM) by co-gelation of starch and dulcitol. To characterize the samples obtained, differential scanning calorimetry (DSC), step-mode DSC, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) were used, and they were also used to test for shape stabilization. The results show that the obtained systems have great potential as shape-stabilized phase change materials. The sample dulcitol/starch with a 50:50 ratio exhibited the highest heat of cold crystallization, up to 52.90 J/g, while the heat of melting was 126.16 J/g under typical DSC measuring conditions. However, depending on the applied heating program, the heat of cold crystallization can even reach 125 J/g. The thermal stability of all compositions was higher than the phase change temperature, with only 1% mass loss occurring at temperatures above 200 degrees C, while the phase change occurred at a maximum of 190 degrees C.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] Experimental study of screening polyols and their binary eutectic phase change materials for long-term thermal energy storage
    Lv, Laiquan
    Huang, Shengyao
    Cen, Kefa
    Zhou, Hao
    JOURNAL OF CLEANER PRODUCTION, 2023, 399
  • [12] Synthesis of shape-stabilized paraffin/silicon dioxide composites as phase change material for thermal energy storage
    Li, Hui
    Fang, Guiyin
    Liu, Xu
    JOURNAL OF MATERIALS SCIENCE, 2010, 45 (06) : 1672 - 1676
  • [13] Evaluation of shape-stabilized phase-change materials using calcium carbonate-based starfish microporous materials for thermal energy storage
    Yun, Beom Yeol
    Choi, Ji Yong
    Kim, Young Uk
    Kang, Yujin
    Kim, Sumin
    APPLIED THERMAL ENGINEERING, 2024, 241
  • [14] Synthesis and thermal properties of shape-stabilized lauric acid/activated carbon composites as phase change materials for thermal energy storage
    Chen, Zhi
    Shan, Feng
    Cao, Lei
    Fang, Guiyin
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 102 : 131 - 136
  • [15] Preparation and thermal properties of shape-stabilized polyethylene glycol/mesoporous silica composite phase change materials for thermal energy storage
    Wang, Chaoming
    Cai, Zhengyu
    Chen, Ke
    Huang, Jun
    Wang, Tingjun
    ENERGY STORAGE, 2019, 1 (02)
  • [16] Thermal properties of shape-stabilized phase change materials based on Low Density Polyethylene, Hexadecane and SEBS for thermal energy storage
    Chriaa, Ibtissem
    Trigui, Abdelwaheb
    Karkri, Mustapha
    Jedidi, Ilyes
    Abdelmouleh, Makki
    Boudaya, Chokri
    APPLIED THERMAL ENGINEERING, 2020, 171
  • [17] Innovative flexible thermal storage textile using nanocomposite shape-stabilized phase change materials
    Zeighampour, Farideh
    Khoddami, Akbar
    Dolez, Patricia
    FASHION AND TEXTILES, 2023, 10 (01)
  • [18] Microstructure and thermal properties of cetyl alcohol/high density polyethylene composite phase change materials with carbon fiber as shape-stabilized thermal storage materials
    Huang, Xiang
    Alva, Guruprasad
    Liu, Lingkun
    Fang, Guiyin
    APPLIED ENERGY, 2017, 200 : 19 - 27
  • [19] Thermal conductivity enhanced polyethylene glycol/expanded perlite shape-stabilized composite phase change materials with Cu powder for thermal energy storage
    Xu, Shanmu
    Zhang, Xiaoguang
    Huang, Zhaohui
    Liu, Yangai
    Fang, Minghao
    Wu, Xiaowen
    Min, Xin
    MATERIALS RESEARCH EXPRESS, 2018, 5 (09):
  • [20] Shape-Stabilized Cellulose Nanocrystal-Based Phase-Change Materials for Energy Storage
    Fan, Xuemeng
    Guan, Ying
    Li, Yingzhan
    Yu, Hou-Yong
    Marek, Jaromir
    Wang, Duanchao
    Militky, Jiri
    Zou, Zhuan-Yong
    Yao, Juming
    ACS APPLIED NANO MATERIALS, 2020, 3 (02) : 1741 - 1748