Survey on Federated Learning for Intrusion Detection System: Concept, Architectures, Aggregation Strategies, Challenges, and Future Directions

被引:7
作者
Khraisat, Ansam [1 ]
Alazab, Ammar [2 ]
Singh, Sarabjot [1 ,2 ]
Jan, Tony [2 ]
Gomez, Alfredo jr. [3 ]
机构
[1] Deakin Univ, Deakin Cyber Res & Innovat Ctr, Burwood, Australia
[2] Torrens Univ Australia, Ctr Artificial Intelligence Res & Optimisat AIRO, Brisbane, Australia
[3] Melbourne Inst Technol, Sch IT & Engn, Melbourne, NSW, Australia
关键词
Intrusion detection systems; federated learning; privacy preservation; network security; PRIVACY;
D O I
10.1145/3687124
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Intrusion Detection Systems (IDS) are essential for securing computer networks by identifying and mitigating potential threats. However, traditional IDS face challenges related to scalability, privacy, and computational demands as network data complexity increases. Federated Learning (FL) has emerged as a promising solution, enabling collaborative model training on decentralized data sources while preserving data privacy. Each participant retains local data repositories, ensuring data sovereignty and precluding data sharing. Leveraging the FL framework, participants locally train machine learning models on their respective datasets, subsequently transmitting model updates to a central server for aggregation. The central server then disseminates the aggregated model updates to individual participants, collectively striving to bolster intrusion detection capabilities. This article presents a comprehensive survey of FL applications in IDS, covering core concepts, architectural approaches, and aggregation strategies. We evaluate the strengths and limitations of various FL methodologies for IDS, addressing privacy and security concerns and exploring privacy-preserving techniques and security protocols. Our examination of aggregation strategies within the FL framework for IDS aims to highlight their effectiveness, limitations, and potential enhancements.
引用
收藏
页数:38
相关论文
共 79 条
[21]   A Taxonomy of Attacks on Federated Learning [J].
Jere, Malhar ;
Farnan, Tyler ;
Koushanfar, Farinaz .
IEEE SECURITY & PRIVACY, 2021, 19 (02) :20-28
[22]   Advances and Open Problems in Federated Learning [J].
Kairouz, Peter ;
McMahan, H. Brendan ;
Avent, Brendan ;
Bellet, Aurelien ;
Bennis, Mehdi ;
Bhagoji, Arjun Nitin ;
Bonawitz, Kallista ;
Charles, Zachary ;
Cormode, Graham ;
Cummings, Rachel ;
D'Oliveira, Rafael G. L. ;
Eichner, Hubert ;
El Rouayheb, Salim ;
Evans, David ;
Gardner, Josh ;
Garrett, Zachary ;
Gascon, Adria ;
Ghazi, Badih ;
Gibbons, Phillip B. ;
Gruteser, Marco ;
Harchaoui, Zaid ;
He, Chaoyang ;
He, Lie ;
Huo, Zhouyuan ;
Hutchinson, Ben ;
Hsu, Justin ;
Jaggi, Martin ;
Javidi, Tara ;
Joshi, Gauri ;
Khodak, Mikhail ;
Konecny, Jakub ;
Korolova, Aleksandra ;
Koushanfar, Farinaz ;
Koyejo, Sanmi ;
Lepoint, Tancrede ;
Liu, Yang ;
Mittal, Prateek ;
Mohri, Mehryar ;
Nock, Richard ;
Ozgur, Ayfer ;
Pagh, Rasmus ;
Qi, Hang ;
Ramage, Daniel ;
Raskar, Ramesh ;
Raykova, Mariana ;
Song, Dawn ;
Song, Weikang ;
Stich, Sebastian U. ;
Sun, Ziteng ;
Suresh, Ananda Theertha .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2021, 14 (1-2) :1-210
[23]   Federated Learning for Internet of Things: Recent Advances, Taxonomy, and Open Challenges [J].
Khan, Latif U. ;
Saad, Walid ;
Han, Zhu ;
Hossain, Ekram ;
Hong, Choong Seon .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2021, 23 (03) :1759-1799
[24]   A critical review of intrusion detection systems in the internet of things: techniques, deployment strategy, validation strategy, attacks, public datasets and challenges [J].
Khraisat, Ansam ;
Alazab, Ammar .
CYBERSECURITY, 2021, 4 (01)
[25]   Survey of intrusion detection systems: techniques, datasets and challenges [J].
Khraisat, Ansam ;
Gondal, Iqbal ;
Vamplew, Peter ;
Kamruzzaman, Joarder .
CYBERSECURITY, 2019, 2 (01)
[26]  
Lai F, 2022, Arxiv, DOI arXiv:2105.11367
[27]   Two-phase Defense Against Poisoning Attacks on Federated Learning-based Intrusion Detection [J].
Lai, Yuan-Cheng ;
Lin, Jheng-Yan ;
Lin, Ying-Dar ;
Hwang, Ren-Hung ;
Lin, Po-Chin ;
Wu, Hsiao-Kuang ;
Chen, Chung-Kuan .
COMPUTERS & SECURITY, 2023, 129
[28]   The Evolution of Federated Learning-Based Intrusion Detection and Mitigation: A Survey [J].
Lavaur, Leo ;
Pahl, Marc-Oliver ;
Busnel, Yann ;
Autrel, Fabien .
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (03) :2309-2332
[29]   DeepFed: Federated Deep Learning for Intrusion Detection in Industrial Cyber-Physical Systems [J].
Li, Beibei ;
Wu, Yuhao ;
Song, Jiarui ;
Lu, Rongxing ;
Li, Tao ;
Zhao, Liang .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (08) :5615-5624
[30]   Federated Learning on Non-IID Data Silos: An Experimental Study [J].
Li, Qinbin ;
Diao, Yiqun ;
Chen, Quan ;
He, Bing Sheng .
2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, :965-978