Domain disentanglement and contrastive learning with source-guided sampling for unsupervised domain adaptation person re-identification

被引:0
|
作者
Wu, Cheng-Hsuan [1 ]
Liu, An-Sheng [1 ]
Chen, Chiung-Tao [1 ]
Fu, Li-Chen [1 ,2 ]
机构
[1] Natl Taiwan Univ, Dept Elect Engn, Taipei 10617, Taiwan
[2] NTU Ctr Artificial Intelligence & Adv Robot AIROBO, Taipei 10617, Taiwan
关键词
Deep learning; Person re-identification; Domain adaptation; Domain disentanglement; Contrastive learning;
D O I
10.1007/s00138-024-01613-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, fully supervised Person re-id methods have already been well developed. Still, they cannot be easily applied to real-life applications because of the domain gap between real-world databases and training datasets. And annotating ground truth label for the entire surveillance system with multiple cameras and videos are labor-intensive and impracticable in the real application. Besides, as the awareness of the right to privacy is rising, it becomes more challenging to collect sufficient training data from the public. Thence, the difficulty of constructing a new dataset for deployment not only arises from the labor cost of labeling but also because the raw data from the public are hard to come by. To be better adapted to real-life system deployment, we proposed an unsupervised domain adaptation based method, which involves Domain Disentanglement Network and Source-Guided Contrastive learning (SGCL). DD-Net first narrows down the domain gap between two datasets, and then SGCL utilizes the labeled source dataset as the clue to guide the training on the target domain. With these two modules, the knowledge transfer can be completed successfully from the training dataset to real-world scenarios. The conducted experiment shows that the proposed method is competitive with the state-of-the-art methods on two public datasets and even outperforms them under the setting of the small-scale target dataset. Therefore, not only the Person Re-ID, but also the object tracking in video or surveillance system can benefit from our new approach when we went to deploy to different environments.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Multi-class center dynamic contrastive learning for unsupervised domain adaptation person re-identification
    Tian, Qing
    Du, Xiaoxin
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 116
  • [2] Cluster-based Dual-branch Contrastive Learning for unsupervised domain adaptation person re-identification
    Tian, Qing
    Sun, Jixin
    KNOWLEDGE-BASED SYSTEMS, 2023, 280
  • [3] CUPR: Contrastive Unsupervised Learning for Person Re-identification
    Khaldi, Khadija
    Shah, Shishir K.
    VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 5: VISAPP, 2021, : 92 - 100
  • [4] Quality Guided Metric Learning for Domain Adaptation Person Re-Identification
    Zhang, Lei
    Li, Haisheng
    Liu, Ruijun
    Wang, Xiaochuan
    Wu, Xiaoqun
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (03) : 6023 - 6030
  • [5] Dual-stream Reciprocal Disentanglement Learning for domain adaptation person re-identification
    Li, Huafeng
    Xu, Kaixiong
    Li, Jinxing
    Yu, Zhengtao
    KNOWLEDGE-BASED SYSTEMS, 2022, 251
  • [6] Unsupervised adversarial domain adaptation with similarity diffusion for person re-identification
    Tang, Geyu
    Gao, Xingyu
    Chen, Zhenyu
    Zhong, Huicai
    NEUROCOMPUTING, 2021, 442 (442) : 337 - 347
  • [7] Noise Resistible Network for Unsupervised Domain Adaptation on Person Re-Identification
    Zhang, Suian
    Zeng, Ying
    Hu, Haifeng
    Liu, Shuyu
    IEEE ACCESS, 2021, 9 : 60740 - 60752
  • [8] UNSUPERVISED DOMAIN ADAPTATION THROUGH SYNTHESIS FOR PERSON RE-IDENTIFICATION
    Xiang, Suncheng
    Fu, Yuzhuo
    You, Guanjie
    Liu, Ting
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [9] Unsupervised domain adaptation for person re-identification with iterative soft clustering
    Ainam, Jean-Paul
    Qin, Ke
    Owusu, Jim Wilson
    Lu, Guoming
    KNOWLEDGE-BASED SYSTEMS, 2021, 212
  • [10] Mutual purification for unsupervised domain adaptation in person re-identification
    Lei Zhang
    Qishuai Diao
    Na Jiang
    Zhong Zhou
    Wei Wu
    Neural Computing and Applications, 2022, 34 : 16929 - 16944