Effects of freeze-thaw on the detachment capacity of soils with different textures on the Loess Plateau, China

被引:2
|
作者
Liu, Juanjuan [1 ,2 ]
Zhang, Kuandi [1 ,2 ]
Shi, Wanbao [1 ,2 ]
Yan, Jingxin [1 ,2 ]
机构
[1] Northwest A&F Univ, State Key Lab Soil Eros & Dryland Farming Loess Pl, Yangling 712100, Shaanxi, Peoples R China
[2] Northwest A&F Univ, Key Lab Agr Soil & Water Engn, Minist Educ Arid Areas, Yangling 712100, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Soil detachment capacity; Shear strength; Freeze-thaw cycle; Overland flow; Hydrodynamic parameter; DIFFERENT LAND USES; EROSION MODEL; HYDRAULIC PARAMETERS; CONCENTRATED FLOW; SHEET EROSION; WATER-CONTENT; STEEP SLOPES; SHALLOW FLOW; CLAY LOAM; REGION;
D O I
10.1016/j.jhydrol.2024.132082
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Soil detachment capacity (D-c) is a crucial indicator for quantifying erosion intensity. However, the combined actions of freeze-thaw and water flow complicate the erosion process, leaving the variation mechanism of D-c under this condition systematically unexplored. This study examined five loess soils from a seasonal freeze-thaw area. The mechanism driving changes in Dcwas quantified through freeze-thaw simulation combined with flow scouring tests, and a D-c prediction model was established. The results revealed that the shear strength (tau(m)), cohesion (Coh), and internal friction angle (phi) in silt loam were higher than in sandy loam. After freeze-thaw cycles (FTC), tau(m), Coh, and phi of the five loess soils decreased by 1.02-1.37, 1.07-9.15, and 0.92-1.05 times, respectively. As FTC increased, tau(m) and Coh gradually stabilized, while phi showed minimal fluctuation, indicating that FTC had a cumulative effect on the deterioration of soil mechanical properties. During FTC, D-c in Wuzhong sandy loam was the largest, being 1.14-3.24 times greater than in other soils, suggesting a significant main effect of soil type on D-C variation, with a contribution rate of 19.27 %. Dceventually stabilized with increasing, indicating a critical FTC of around 10 for its impact on D-c. Compared to unfrozen soils, D-c increased by 33.69 %- 102.40 % under the combined effects of freeze-thaw and water flow, clarifying that FTC aggravated soil instability. Effective stream power was the optimum hydraulic parameter, contributing the most to Dc(45.94 %). FTC (6.41 %) and initial soil moisture content (8.59 %) were less influential, as FTC initially degraded soil properties, and then the combined action with water flow intensified soil damage, causing the role of freeze-thaw factors to be obscured by other variables. A Dcprediction model using a general flow intensity index estimated well D-c, with both R-2 and NSE at 0.94. Model performance comparison emphasized the need for validation when extending the application range beyond development conditions. These findings provide new insights into the detachment mechanisms of different textured soils under compound freeze-thaw and hydrodynamic influence in freeze-thaw region.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Effects of freeze-thaw on soil detachment capacity in the black soil region of Northeastern China
    Liu, Juanjuan
    Zhang, Kuandi
    Shi, Wanbao
    Liu, Lijuan
    Lu, Chao
    SOIL & TILLAGE RESEARCH, 2024, 236
  • [2] Effect of Freeze-Thaw Cycles on Soil Detachment Capacities of Three Loamy Soils on the Loess Plateau of China
    Lu, Jian
    Sun, Baoyang
    Ren, Feipeng
    Li, Hao
    Jiao, Xiyun
    WATER, 2021, 13 (03)
  • [3] Soil detachment capacity by rill flow for five typical loess soils on the Loess Plateau of China
    Shen, Nan
    Wang, Zhanli
    Guo, Qi
    Zhang, Qingwei
    Wu, Bing
    Liu, June
    Ma, Chunyan
    Delang, Claudio O.
    Zhang, Fengbao
    SOIL & TILLAGE RESEARCH, 2021, 213
  • [4] Response of dimensionless soil detachment capacity to flow intensity parameters in seasonal freeze-thaw region
    Liu, Juanjuan
    Zhang, Kuandi
    Lu, Chao
    Shi, Wanbao
    JOURNAL OF HYDROLOGY, 2024, 635
  • [5] Effects of freeze-thaw on soil detachment capacity and erosion resistance
    Sun B.
    Wu Z.
    Li Z.
    Liu J.
    Xiao J.
    Cheng D.
    Ren F.
    Ma J.
    Liu C.
    Ma B.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2020, 36 (11): : 57 - 65
  • [6] An analysis of soil detachment capacity under freeze-thaw conditions using the Taguchi method
    Sun, B. Y.
    Xiao, J. B.
    Li, Z. B.
    Ma, B.
    Zhang, L. T.
    Huang, Y. L.
    Bai, L. F.
    CATENA, 2018, 162 : 100 - 107
  • [7] Soil Freeze-Thaw and Water Transport Characteristics Under Different Vegetation Types in Seasonal Freeze-Thaw Areas of the Loess Plateau
    Bo, Lanfeng
    Li, Zhanbin
    Li, Peng
    Xu, Guoche
    Xiao, Lie
    Ma, Bo
    FRONTIERS IN EARTH SCIENCE, 2021, 9
  • [8] The effects of Pinus tabuliformis on soil detachment under different influencing factors in the Loess Plateau of China
    Wang, Dandan
    Yu, Xinxiao
    Jia, Guodong
    Zhang, Jianjun
    Liu, Ziqiang
    CHEMISTRY AND ECOLOGY, 2018, 34 (05) : 439 - 453
  • [9] Soil detachment by overland flow under different vegetation restoration models in the Loess Plateau of China
    Wang, Bing
    Zhang, Guang-Hui
    Shi, Yang-Yang
    Zhang, X. C.
    CATENA, 2014, 116 : 51 - 59
  • [10] Modeling soil detachment capacity by rill flow under the effect of freeze-thaw and the root system
    Ma, Jianye
    Li, Zhanbin
    Sun, Baoyang
    Ma, Bo
    Zhang, Letao
    NATURAL HAZARDS, 2022, 112 (01) : 207 - 230