High-quality thickness-tunable InAs nanowire crosses grown by molecular-beam epitaxy

被引:0
作者
Liao, Dunyuan [1 ,2 ]
Zhong, Qing [1 ]
Hou, Xiyu [1 ,2 ]
Wei, Dahai [1 ,2 ]
Pan, Dong [1 ,2 ]
Zhao, Jianhua [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Semicond, State Key Lab Superlatt & Microstruct, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
GaAs; InAs; Nanowire; Nanowire cross; Molecular-beam epitaxy; CORE-SHELL NANOWIRES; GAAS NANOWIRES; PHASE;
D O I
10.1016/j.vacuum.2024.113657
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
InAs nanowire crosses show great potential applications in detection and braiding of Majorana zero modes. Controlled growth of high-quality and diameter tunable InAs nanowire crosses is fundamental for these applications. However, it is still difficult to freely and conveniently adjust the diameter of the free-standing InAs nanowire crosses grown by the conventional growth methods. Here, we report a new technique to realize the growth of high-quality thickness-tunable InAs nanowire crosses by molecular-beam epitaxy. GaAs nanowire crosses were firstly grown on the Si (100) substrates spontaneously by merging the <111>-oriented GaAs nanowires. InAs nanowire crosses were then obtained by in situ growth of InAs shells on the facets of GaAs nanowire cross cores. Detailed scanning and transmission electron microscopic observations and energy dispersive spectrum analyses confirm that the InAs nanowire crosses grown by this manner have continuous and smooth morphology and they are high-quality zinc-blende crystals. More importantly, the InAs shell is grown with the vapor-solid growth mechanism and the thickness of the InAs nanowire crosses can be tuned by varying the InAs shell growth time. Our work provides a valuable method for the controlled growth of thickness-tunable semiconductor nanowire crosses.
引用
收藏
页数:6
相关论文
共 59 条
[1]   Non-Abelian statistics and topological quantum information processing in 1D wire networks [J].
Alicea, Jason ;
Oreg, Yuval ;
Refael, Gil ;
von Oppen, Felix ;
Fisher, Matthew P. A. .
NATURE PHYSICS, 2011, 7 (05) :412-417
[2]   Effects of Gate-Induced Electric Fields on Semiconductor Majorana Nanowires [J].
Antipov, Andrey E. ;
Bargerbos, Arno ;
Winkler, Georg W. ;
Bauer, Bela ;
Rossi, Enrico ;
Lutchyn, Roman M. .
PHYSICAL REVIEW X, 2018, 8 (03)
[3]   Nanowire resonant tunneling diodes [J].
Björk, MT ;
Ohlsson, BJ ;
Thelander, C ;
Persson, AI ;
Deppert, K ;
Wallenberg, LR ;
Samuelson, L .
APPLIED PHYSICS LETTERS, 2002, 81 (23) :4458-4460
[4]   Nucleation and growth of Au-assisted GaAs nanowires on GaAs(111)B and Si(111) in comparison [J].
Breuer, Steffen ;
Hilse, Maria ;
Geelhaar, Lutz ;
Riechert, Henning .
JOURNAL OF CRYSTAL GROWTH, 2011, 323 (01) :311-314
[5]   Rationally Designed Single-Crystalline Nanowire Networks [J].
Car, Diana ;
Wang, Jia ;
Verheijen, Marcel A. ;
Bakkers, Erik P. A. M. ;
Plissard, Sebastien R. .
ADVANCED MATERIALS, 2014, 26 (28) :4875-+
[6]   Shadow Epitaxy for In Situ Growth of Generic Semiconductor/Superconductor Hybrids [J].
Carrad, Damon J. ;
Bjergfelt, Martin ;
Kanne, Thomas ;
Aagesen, Martin ;
Krizek, Filip ;
Fiordaliso, Elisabetta M. ;
Johnson, Erik ;
Nygard, Jesper ;
Jespersen, Thomas Sand .
ADVANCED MATERIALS, 2020, 32 (23)
[7]   Self-catalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy [J].
Cirlin, G. E. ;
Dubrovskii, V. G. ;
Samsonenko, Yu. B. ;
Bouravleuv, A. D. ;
Durose, K. ;
Proskuryakov, Y. Y. ;
Mendes, Budhikar ;
Bowen, L. ;
Kaliteevski, M. A. ;
Abram, R. A. ;
Zeze, Dagou .
PHYSICAL REVIEW B, 2010, 82 (03)
[8]   Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy [J].
Colombo, C. ;
Spirkoska, D. ;
Frimmer, M. ;
Abstreiter, G. ;
Morral, A. Fontcuberta I. .
PHYSICAL REVIEW B, 2008, 77 (15)
[9]   Droplet Dynamics in Controlled InAs Nanowire Interconnections [J].
Dalacu, Dan ;
Kam, Alicia ;
Austing, D. Guy ;
Poole, Philip J. .
NANO LETTERS, 2013, 13 (06) :2676-2681
[10]   Be, Te, and Si Doping of GaAs Nanowires: Theory and Experiment [J].
Dubrovskii, Vladimir G. ;
Hijazi, Hadi ;
Goktas, Nebile Isik ;
LaPierre, Ray R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (31) :17299-17307