Deep supervised fused similarity hashing for cross-modal retrieval

被引:0
|
作者
Ng W.W.Y. [1 ]
Xu Y. [1 ]
Tian X. [2 ]
Wang H. [3 ]
机构
[1] Guangdong Provincial Key Laboratory of Computational Intelligence and Cyberspace Information, School of Computer Science and Engineering, South China University of Technology, Guangzhou
[2] School of Artificial Intelligence, South China Normal University, Guangzhou
[3] School of Electronics, Electrical Engineering and Computer Science, Queens University Belfast, Belfast
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Common semantic subspace; Cross-modal retrieval; Deep hashing; Fused similarity;
D O I
10.1007/s11042-024-19581-2
中图分类号
学科分类号
摘要
The need for cross-modal retrieval increases significantly with the rapid growth of multimedia information on the Internet. However, most of existing cross-modal retrieval methods neglect the correlation between label similarity and intra-modality similarity in common semantic subspace training, which makes the trained common semantic subspace unable to preserve semantic similarity of original data effectively. Therefore, a novel cross-modal hashing method is proposed in this paper, namely, Deep Supervised Fused Similarity Hashing (DSFSH). The DSFSH mainly consists of two parts. Firstly, a fused similarity method is proposed to exploit the intrinsic inter-modality correlation of data while preserving the intra-modality relationship of data at the same time. Secondly, a novel quantization max-margin loss is proposed. The gap between cosine similarity and Hamming similarity is closed by minimizing this loss. Extensive experimental results on three benchmark datasets show that the proposed method yields better retrieval performance comparing to state-of-the-art methods. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
引用
收藏
页码:86537 / 86555
页数:18
相关论文
共 50 条
  • [21] Supervised Intra- and Inter-Modality Similarity Preserving Hashing for Cross-Modal Retrieval
    Chen, Zhikui
    Zhong, Fangming
    Min, Geyong
    Leng, Yonglin
    Ying, Yiming
    IEEE ACCESS, 2018, 6 : 27796 - 27808
  • [22] Deep Multiscale Fusion Hashing for Cross-Modal Retrieval
    Nie, Xiushan
    Wang, Bowei
    Li, Jiajia
    Hao, Fanchang
    Jian, Muwei
    Yin, Yilong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (01) : 401 - 410
  • [23] Fine-grained similarity semantic preserving deep hashing for cross-modal retrieval
    Li, Guoyou
    Peng, Qingjun
    Zou, Dexu
    Yang, Jinyue
    Shu, Zhenqiu
    FRONTIERS IN PHYSICS, 2023, 11
  • [24] Revising similarity relationship hashing for unsupervised cross-modal retrieval
    Wu, You
    Li, Bo
    Li, Zhixin
    NEUROCOMPUTING, 2025, 614
  • [25] Supervised Hierarchical Cross-Modal Hashing
    Sun, Changchang
    Song, Xuemeng
    Feng, Fuli
    Zhao, Wayne Xin
    Zhang, Hao
    Nie, Liqiang
    PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), 2019, : 725 - 734
  • [26] Weakly Supervised Cross-Modal Hashing
    Liu, Xuanwu
    Yu, Guoxian
    Domeniconi, Carlotta
    Wang, Jun
    Xiao, Guoqiang
    Guo, Maozu
    IEEE TRANSACTIONS ON BIG DATA, 2022, 8 (02) : 552 - 563
  • [27] Deep cross-modal hashing with fine-grained similarity
    Yangdong Chen
    Jiaqi Quan
    Yuejie Zhang
    Rui Feng
    Tao Zhang
    Applied Intelligence, 2023, 53 : 28954 - 28973
  • [28] Robust supervised matrix factorization hashing with application to cross-modal retrieval
    Zhenqiu Shu
    Kailing Yong
    Donglin Zhang
    Jun Yu
    Zhengtao Yu
    Xiao-Jun Wu
    Neural Computing and Applications, 2023, 35 : 6665 - 6684
  • [29] Online supervised collective matrix factorization hashing for cross-modal retrieval
    Shu, Zhenqiu
    Li, Li
    Yu, Jun
    Zhang, Donglin
    Yu, Zhengtao
    Wu, Xiao-Jun
    APPLIED INTELLIGENCE, 2023, 53 (11) : 14201 - 14218
  • [30] Self-Supervised Adversarial Hashing Networks for Cross-Modal Retrieval
    Li, Chao
    Deng, Cheng
    Li, Ning
    Liu, Wei
    Gao, Xinbo
    Tao, Dacheng
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 4242 - 4251