Quantum Many-Body Spin Ratchets

被引:1
|
作者
Zadnik, Lenart [1 ]
Ljubotina, Marko [2 ]
Krajnik, Ziga [3 ]
Ilievski, Enej [1 ]
Prosen, Tomaz [1 ,4 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Dept Phys, Jadranska 19, SI-1000 Ljubljana, Slovenia
[2] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[3] NYU, Dept Phys, 726 Broadway, New York, NY 10003 USA
[4] Inst Math Phys & Mech, Jadranska 19, SI-1000 Ljubljana, Slovenia
来源
PRX QUANTUM | 2024年 / 5卷 / 03期
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
ISOTROPIC HEISENBERG CHAIN; ARBITRARY SPINS; THERMODYNAMICS; SIMULATIONS; DYNAMICS; SYSTEM; ATOMS;
D O I
10.1103/PRXQuantum.5.030356
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Introducing a class of SU(2) invariant quantum unitary circuits generating chiral transport, we examine the role of broken space-reflection and time-reversal symmetries on spin-transport properties. Upon adjusting parameters of local unitary gates, the dynamics can be either chaotic or integrable. The latter corresponds to a generalization of the space-time discretized (Trotterized) higher-spin quantum Heisenberg chain. We demonstrate that breaking of space-reflection symmetry results in a drift in the dynamical spin susceptibility. Remarkably, we find a universal drift velocity given by a simple formula, which, at zero average magnetization, depends only on the values of SU(2) Casimir invariants associated with local spins. In the integrable case, the drift velocity formula is confirmed analytically based on the exact solution of thermodynamic Bethe ansatz equations. Finally, by inspecting the large fluctuations of the time-integrated current between two halves of the system in stationary maximum-entropy states, we demonstrate violation of the Gallavotti-Cohen symmetry, implying that such states cannot be regarded as equilibrium ones. We show that the scaled cumulant generating function of the time-integrated current instead obeys a generalized fluctuation relation.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Quantum revivals and many-body localization
    Vasseur, R.
    Parameswaran, S. A.
    Moore, J. E.
    PHYSICAL REVIEW B, 2015, 91 (14)
  • [42] Modular Many-Body Quantum Sensors
    Mukhopadhyay, Chiranjib
    Bayat, Abolfazl
    PHYSICAL REVIEW LETTERS, 2024, 133 (12)
  • [43] Quantum Many-Body Topology of Quasicrystals
    Else, Dominic, V
    Huang, Sheng-Jie
    Prem, Abhinav
    Gromov, Andrey
    PHYSICAL REVIEW X, 2021, 11 (04)
  • [44] Many-Body Delocalization as a Quantum Avalanche
    Thiery, Thimothee
    Huveneers, Francois
    Mueller, Markus
    De Roeck, Wojciech
    PHYSICAL REVIEW LETTERS, 2018, 121 (14)
  • [45] Many-body localization and quantum thermalization
    Altman, Ehud
    NATURE PHYSICS, 2018, 14 (10) : 979 - 983
  • [46] Convexity and the quantum many-body problem
    Huu-Tai, P. Chau
    Van Isacker, P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (20)
  • [47] Many-body effects in quantum metrology
    Czajkowski, Jan
    Pawlowski, Krzysztof
    Demkowicz-Dobrzanski, Rafal
    NEW JOURNAL OF PHYSICS, 2019, 21
  • [48] Quantum computing with and for many-body physics
    Ayral, Thomas
    Besserve, Pauline
    Lacroix, Denis
    Guzman, Edgar Andres Ruiz
    EUROPEAN PHYSICAL JOURNAL A, 2023, 59 (10):
  • [49] Nuclear quantum many-body dynamics
    Simenel, Cedric
    EUROPEAN PHYSICAL JOURNAL A, 2012, 48 (11):
  • [50] Quantum stochasticity and the many-body problem
    Weidenmüller, HA
    NEW DIRECTIONS IN QUANTUM CHAOS, 2000, 143 : 313 - 331