Quantum Many-Body Spin Ratchets

被引:1
|
作者
Zadnik, Lenart [1 ]
Ljubotina, Marko [2 ]
Krajnik, Ziga [3 ]
Ilievski, Enej [1 ]
Prosen, Tomaz [1 ,4 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Dept Phys, Jadranska 19, SI-1000 Ljubljana, Slovenia
[2] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[3] NYU, Dept Phys, 726 Broadway, New York, NY 10003 USA
[4] Inst Math Phys & Mech, Jadranska 19, SI-1000 Ljubljana, Slovenia
来源
PRX QUANTUM | 2024年 / 5卷 / 03期
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
ISOTROPIC HEISENBERG CHAIN; ARBITRARY SPINS; THERMODYNAMICS; SIMULATIONS; DYNAMICS; SYSTEM; ATOMS;
D O I
10.1103/PRXQuantum.5.030356
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Introducing a class of SU(2) invariant quantum unitary circuits generating chiral transport, we examine the role of broken space-reflection and time-reversal symmetries on spin-transport properties. Upon adjusting parameters of local unitary gates, the dynamics can be either chaotic or integrable. The latter corresponds to a generalization of the space-time discretized (Trotterized) higher-spin quantum Heisenberg chain. We demonstrate that breaking of space-reflection symmetry results in a drift in the dynamical spin susceptibility. Remarkably, we find a universal drift velocity given by a simple formula, which, at zero average magnetization, depends only on the values of SU(2) Casimir invariants associated with local spins. In the integrable case, the drift velocity formula is confirmed analytically based on the exact solution of thermodynamic Bethe ansatz equations. Finally, by inspecting the large fluctuations of the time-integrated current between two halves of the system in stationary maximum-entropy states, we demonstrate violation of the Gallavotti-Cohen symmetry, implying that such states cannot be regarded as equilibrium ones. We show that the scaled cumulant generating function of the time-integrated current instead obeys a generalized fluctuation relation.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Orthogonal Quantum Many-Body Scars
    Zhao, Hongzheng
    Smith, Adam
    Mintert, Florian
    Knolle, Johannes
    PHYSICAL REVIEW LETTERS, 2021, 127 (15)
  • [32] QUANTUM SCALING IN MANY-BODY SYSTEMS
    CONTINENTINO, MA
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1994, 239 (03): : 179 - 213
  • [33] Dynamics of many-body quantum synchronisation
    Davis-Tilley, C.
    Teoh, C. K.
    Armour, A. D.
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [34] Many-body localized quantum batteries
    Rossini, Davide
    Andolina, Gian Marcello
    Polini, Marco
    PHYSICAL REVIEW B, 2019, 100 (11)
  • [35] Quantum dots and the many-body problem
    Weidenmüller, HA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2001, 15 (10-11): : 1389 - 1403
  • [36] Quantum computing with and for many-body physics
    Thomas Ayral
    Pauline Besserve
    Denis Lacroix
    Edgar Andres Ruiz Guzman
    The European Physical Journal A, 59
  • [37] Many-body quantum interference on hypercubes
    Dittel, Christoph
    Keil, Robert
    Weihs, Gregor
    QUANTUM SCIENCE AND TECHNOLOGY, 2017, 2 (01):
  • [38] Many-body quantum thermal machines
    Mukherjee, Victor
    Divakaran, Uma
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (45)
  • [39] Disorder in Quantum Many-Body Systems
    Vojta, Thomas
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 10, 2019, 10 (01): : 233 - 252
  • [40] SYNTHETIC QUANTUM MANY-BODY SYSTEMS
    Guerlin, C.
    Baumann, K.
    Brennecke, F.
    Greif, D.
    Joerdens, R.
    Leinss, S.
    Strohmaier, N.
    Tarruell, L.
    Uehlinger, T.
    Moritz, H.
    Esslinger, T.
    LASER SPECTROSCOPY, 2010, : 212 - 221