Quantum Many-Body Spin Ratchets

被引:1
|
作者
Zadnik, Lenart [1 ]
Ljubotina, Marko [2 ]
Krajnik, Ziga [3 ]
Ilievski, Enej [1 ]
Prosen, Tomaz [1 ,4 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Dept Phys, Jadranska 19, SI-1000 Ljubljana, Slovenia
[2] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[3] NYU, Dept Phys, 726 Broadway, New York, NY 10003 USA
[4] Inst Math Phys & Mech, Jadranska 19, SI-1000 Ljubljana, Slovenia
来源
PRX QUANTUM | 2024年 / 5卷 / 03期
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
ISOTROPIC HEISENBERG CHAIN; ARBITRARY SPINS; THERMODYNAMICS; SIMULATIONS; DYNAMICS; SYSTEM; ATOMS;
D O I
10.1103/PRXQuantum.5.030356
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Introducing a class of SU(2) invariant quantum unitary circuits generating chiral transport, we examine the role of broken space-reflection and time-reversal symmetries on spin-transport properties. Upon adjusting parameters of local unitary gates, the dynamics can be either chaotic or integrable. The latter corresponds to a generalization of the space-time discretized (Trotterized) higher-spin quantum Heisenberg chain. We demonstrate that breaking of space-reflection symmetry results in a drift in the dynamical spin susceptibility. Remarkably, we find a universal drift velocity given by a simple formula, which, at zero average magnetization, depends only on the values of SU(2) Casimir invariants associated with local spins. In the integrable case, the drift velocity formula is confirmed analytically based on the exact solution of thermodynamic Bethe ansatz equations. Finally, by inspecting the large fluctuations of the time-integrated current between two halves of the system in stationary maximum-entropy states, we demonstrate violation of the Gallavotti-Cohen symmetry, implying that such states cannot be regarded as equilibrium ones. We show that the scaled cumulant generating function of the time-integrated current instead obeys a generalized fluctuation relation.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Quantum quenches in the many-body localized phase
    Serbyn, Maksym
    Papic, Z.
    Abanin, D. A.
    PHYSICAL REVIEW B, 2014, 90 (17):
  • [32] Weak ergodicity breaking from quantum many-body scars
    Turner, C. J.
    Michailidis, A. A.
    Abanin, D. A.
    Serbyn, M.
    Papic, Z.
    NATURE PHYSICS, 2018, 14 (07) : 745 - +
  • [33] Quantum Ergodicity in the Many-Body Localization Problem
    Monteiro, Felipe
    Tezuka, Masaki
    Altland, Alexander
    Huse, David A.
    Micklitz, Tobias
    PHYSICAL REVIEW LETTERS, 2021, 127 (03)
  • [34] Quantum Many-Body Scars: A Quasiparticle Perspective
    Chandran, Anushya
    Iadecola, Thomas
    Khemani, Vedika
    Moessner, Roderich
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, 2023, 14 : 443 - 469
  • [35] Effective Lagrangians for quantum many-body systems
    Andersen, Jens O.
    Brauner, Tomas
    Hofmann, Christoph P.
    Vuorinen, Aleksi
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (08):
  • [36] Quantum Many-Body Scars in Optical Lattices
    Zhao, Hongzheng
    Vovrosh, Joseph
    Mintert, Florian
    Knolle, Johannes
    PHYSICAL REVIEW LETTERS, 2020, 124 (16)
  • [37] Proposal for many-body quantum chaos detection
    Das, Adway Kumar
    Cianci, Cameron
    Cabral, Delmar G. A.
    Zarate-Herrada, David A.
    Pinney, Patrick
    Pilatowsky-Cameo, Saul
    Matsoukas-Roubeas, Apollonas S.
    Batista, Victor S.
    del Campo, Adolfo
    Torres-Herrera, E. Jonathan
    Santos, Lea F.
    PHYSICAL REVIEW RESEARCH, 2025, 7 (01):
  • [38] Revivals imply quantum many-body scars
    Alhambra, Alvaro M.
    Anshu, Anurag
    Wilming, Henrik
    PHYSICAL REVIEW B, 2020, 101 (20)
  • [39] Shareability of quantum correlations in a many-body spin system with two- and three-body interactions
    Kiran, P.
    Reji, Harsha Miriam
    Hegde, Hemant S.
    Prabhu, R.
    PHYSICAL REVIEW A, 2024, 109 (03)
  • [40] Equilibration time in many-body quantum systems
    Lezama, Talia L. M.
    Jonathan Torres-Herrera, E.
    Perez-Bernal, Francisco
    Bar Lev, Yevgeny
    Santos, Lea F.
    PHYSICAL REVIEW B, 2021, 104 (08)