Quantum Many-Body Spin Ratchets

被引:1
|
作者
Zadnik, Lenart [1 ]
Ljubotina, Marko [2 ]
Krajnik, Ziga [3 ]
Ilievski, Enej [1 ]
Prosen, Tomaz [1 ,4 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Dept Phys, Jadranska 19, SI-1000 Ljubljana, Slovenia
[2] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[3] NYU, Dept Phys, 726 Broadway, New York, NY 10003 USA
[4] Inst Math Phys & Mech, Jadranska 19, SI-1000 Ljubljana, Slovenia
来源
PRX QUANTUM | 2024年 / 5卷 / 03期
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
ISOTROPIC HEISENBERG CHAIN; ARBITRARY SPINS; THERMODYNAMICS; SIMULATIONS; DYNAMICS; SYSTEM; ATOMS;
D O I
10.1103/PRXQuantum.5.030356
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Introducing a class of SU(2) invariant quantum unitary circuits generating chiral transport, we examine the role of broken space-reflection and time-reversal symmetries on spin-transport properties. Upon adjusting parameters of local unitary gates, the dynamics can be either chaotic or integrable. The latter corresponds to a generalization of the space-time discretized (Trotterized) higher-spin quantum Heisenberg chain. We demonstrate that breaking of space-reflection symmetry results in a drift in the dynamical spin susceptibility. Remarkably, we find a universal drift velocity given by a simple formula, which, at zero average magnetization, depends only on the values of SU(2) Casimir invariants associated with local spins. In the integrable case, the drift velocity formula is confirmed analytically based on the exact solution of thermodynamic Bethe ansatz equations. Finally, by inspecting the large fluctuations of the time-integrated current between two halves of the system in stationary maximum-entropy states, we demonstrate violation of the Gallavotti-Cohen symmetry, implying that such states cannot be regarded as equilibrium ones. We show that the scaled cumulant generating function of the time-integrated current instead obeys a generalized fluctuation relation.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Quantum many-body scar models in one-dimensional spin chains
    Wang, Jia-Wei
    Zhou, Xiang -Fa
    Guo, Guang-Can
    Zhou, Zheng-Wei
    PHYSICAL REVIEW B, 2024, 109 (12)
  • [22] Many-Body Mobility Edge in a Mean-Field Quantum Spin Glass
    Laumann, C. R.
    Pal, A.
    Scardicchio, A.
    PHYSICAL REVIEW LETTERS, 2014, 113 (20)
  • [23] Quantum advantage from energy measurements of many-body quantum systems
    Novo, Leonardo
    Bermejo-Vega, Juani
    Garcia-Patron, Raul
    QUANTUM, 2021, 5
  • [24] Single spin probe of many-body localization
    van Nieuwenburg, Evert P. L.
    Huber, Sebastian D.
    Chitra, R.
    PHYSICAL REVIEW B, 2016, 94 (18)
  • [25] Scrambling of quantum information in quantum many-body systems
    Iyoda, Eiki
    Sagawa, Takahiro
    PHYSICAL REVIEW A, 2018, 97 (04)
  • [26] Many-Body Quantum Chaos and Entanglement in a Quantum Ratchet
    Valdez, Marc Andrew
    Shchedrin, Gavriil
    Heimsoth, Martin
    Creffield, Charles E.
    Sols, Fernando
    Carr, Lincoln D.
    PHYSICAL REVIEW LETTERS, 2018, 120 (23)
  • [27] Disorder enhanced quantum many-body scars in Hilbert hypercubes
    van Voorden, Bart
    Marcuzzi, Matteo
    Schoutens, Kareljan
    Minar, Jiri
    PHYSICAL REVIEW B, 2021, 103 (22)
  • [28] Thermalization of isolated quantum many-body system and the role of entanglement
    Saha, Tanmay
    Ghosal, Pratik
    Bej, Pratapaditya
    Banerjee, Abhishek
    Deb, Prasenjit
    PHYSICS LETTERS A, 2024, 509
  • [29] Strong Quantum Metrological Limit from Many-Body Physics
    Chu, Yaoming
    Li, Xiangbei
    Cai, Jianming
    PHYSICAL REVIEW LETTERS, 2023, 130 (17)
  • [30] Many-Body Quantum Spin Dynamics with Monte Carlo Trajectories on a Discrete Phase Space
    Schachenmayer, J.
    Pikovski, A.
    Rey, A. M.
    PHYSICAL REVIEW X, 2015, 5 (01):