Quantum Many-Body Spin Ratchets

被引:1
|
作者
Zadnik, Lenart [1 ]
Ljubotina, Marko [2 ]
Krajnik, Ziga [3 ]
Ilievski, Enej [1 ]
Prosen, Tomaz [1 ,4 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Dept Phys, Jadranska 19, SI-1000 Ljubljana, Slovenia
[2] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[3] NYU, Dept Phys, 726 Broadway, New York, NY 10003 USA
[4] Inst Math Phys & Mech, Jadranska 19, SI-1000 Ljubljana, Slovenia
来源
PRX QUANTUM | 2024年 / 5卷 / 03期
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
ISOTROPIC HEISENBERG CHAIN; ARBITRARY SPINS; THERMODYNAMICS; SIMULATIONS; DYNAMICS; SYSTEM; ATOMS;
D O I
10.1103/PRXQuantum.5.030356
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Introducing a class of SU(2) invariant quantum unitary circuits generating chiral transport, we examine the role of broken space-reflection and time-reversal symmetries on spin-transport properties. Upon adjusting parameters of local unitary gates, the dynamics can be either chaotic or integrable. The latter corresponds to a generalization of the space-time discretized (Trotterized) higher-spin quantum Heisenberg chain. We demonstrate that breaking of space-reflection symmetry results in a drift in the dynamical spin susceptibility. Remarkably, we find a universal drift velocity given by a simple formula, which, at zero average magnetization, depends only on the values of SU(2) Casimir invariants associated with local spins. In the integrable case, the drift velocity formula is confirmed analytically based on the exact solution of thermodynamic Bethe ansatz equations. Finally, by inspecting the large fluctuations of the time-integrated current between two halves of the system in stationary maximum-entropy states, we demonstrate violation of the Gallavotti-Cohen symmetry, implying that such states cannot be regarded as equilibrium ones. We show that the scaled cumulant generating function of the time-integrated current instead obeys a generalized fluctuation relation.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] A many-body quantum register for a spin qubit
    Appel, Martin Hayhurst
    Ghorbal, Alexander
    Shofer, Noah
    Zaporski, Leon
    Manna, Santanu
    da Silva, Saimon Filipe Covre
    Haeusler, Urs
    Le Gall, Claire
    Rastelli, Armando
    Gangloff, Dorian A.
    Atatuere, Mete
    NATURE PHYSICS, 2025, 21 (03) : 368 - 373
  • [2] On Many-Body Localization for Quantum Spin Chains
    Imbrie, John Z.
    JOURNAL OF STATISTICAL PHYSICS, 2016, 163 (05) : 998 - 1048
  • [3] On Many-Body Localization for Quantum Spin Chains
    John Z. Imbrie
    Journal of Statistical Physics, 2016, 163 : 998 - 1048
  • [4] Bosonic many-body theory of quantum spin ice
    Hao, Zhihao
    Day, Alexandre G. R.
    Gingras, Michel J. P.
    PHYSICAL REVIEW B, 2014, 90 (21)
  • [5] Many-body spin interactions in semiconductor quantum wires
    Reilly, DJ
    Facer, GR
    Dzurak, AS
    Kane, BE
    Clark, RG
    Stiles, PJ
    O'Brien, JL
    Lumpkin, NE
    Pfeiffer, LN
    West, KW
    AUSTRALIAN JOURNAL OF PHYSICS, 2000, 53 (04): : 543 - 552
  • [6] Dynamic Stabilization of a Quantum Many-Body Spin System
    Hoang, T. M.
    Gerving, C. S.
    Land, B. J.
    Anquez, M.
    Hamley, C. D.
    Chapman, M. S.
    PHYSICAL REVIEW LETTERS, 2013, 111 (09)
  • [7] A Quantum Many-Body Spin System in an Optical Lattice Clock
    Martin, M. J.
    Bishof, M.
    Swallows, M. D.
    Zhang, X.
    Benko, C.
    von-Stecher, J.
    Gorshkov, A. V.
    Rey, A. M.
    Ye, Jun
    SCIENCE, 2013, 341 (6146) : 632 - 636
  • [8] Quantum many-body scars in spin models with multibody interactions
    Sanada, Kazuyuki
    Miao, Yuan
    Katsura, Hosho
    PHYSICAL REVIEW B, 2023, 108 (15)
  • [9] Spin-chain model of a many-body quantum battery
    Le, Thao P.
    Levinsen, Jesper
    Modi, Kavan
    Parish, Meera M.
    Pollock, Felix A.
    PHYSICAL REVIEW A, 2018, 97 (02)
  • [10] Coherent imaging spectroscopy of a quantum many-body spin system
    Senko, C.
    Smith, J.
    Richerme, P.
    Lee, A.
    Campbell, W. C.
    Monroe, C.
    SCIENCE, 2014, 345 (6195) : 430 - 433