Quantum Many-Body Spin Ratchets

被引:1
|
作者
Zadnik, Lenart [1 ]
Ljubotina, Marko [2 ]
Krajnik, Ziga [3 ]
Ilievski, Enej [1 ]
Prosen, Tomaz [1 ,4 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Dept Phys, Jadranska 19, SI-1000 Ljubljana, Slovenia
[2] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[3] NYU, Dept Phys, 726 Broadway, New York, NY 10003 USA
[4] Inst Math Phys & Mech, Jadranska 19, SI-1000 Ljubljana, Slovenia
来源
PRX QUANTUM | 2024年 / 5卷 / 03期
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
ISOTROPIC HEISENBERG CHAIN; ARBITRARY SPINS; THERMODYNAMICS; SIMULATIONS; DYNAMICS; SYSTEM; ATOMS;
D O I
10.1103/PRXQuantum.5.030356
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Introducing a class of SU(2) invariant quantum unitary circuits generating chiral transport, we examine the role of broken space-reflection and time-reversal symmetries on spin-transport properties. Upon adjusting parameters of local unitary gates, the dynamics can be either chaotic or integrable. The latter corresponds to a generalization of the space-time discretized (Trotterized) higher-spin quantum Heisenberg chain. We demonstrate that breaking of space-reflection symmetry results in a drift in the dynamical spin susceptibility. Remarkably, we find a universal drift velocity given by a simple formula, which, at zero average magnetization, depends only on the values of SU(2) Casimir invariants associated with local spins. In the integrable case, the drift velocity formula is confirmed analytically based on the exact solution of thermodynamic Bethe ansatz equations. Finally, by inspecting the large fluctuations of the time-integrated current between two halves of the system in stationary maximum-entropy states, we demonstrate violation of the Gallavotti-Cohen symmetry, implying that such states cannot be regarded as equilibrium ones. We show that the scaled cumulant generating function of the time-integrated current instead obeys a generalized fluctuation relation.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Many-body quantum thermal machines
    Mukherjee, Victor
    Divakaran, Uma
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (45)
  • [2] Quantum quenches and many-body localization in the thermodynamic limit
    Tang, Baoming
    Iyer, Deepak
    Rigol, Marcos
    PHYSICAL REVIEW B, 2015, 91 (16)
  • [3] Many-Body Localization and Thermalization in Quantum Statistical Mechanics
    Nandkishore, Rahul
    Huse, David A.
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 6, 2015, 6 : 15 - 38
  • [4] Spin-chain model of a many-body quantum battery
    Le, Thao P.
    Levinsen, Jesper
    Modi, Kavan
    Parish, Meera M.
    Pollock, Felix A.
    PHYSICAL REVIEW A, 2018, 97 (02)
  • [5] Quantum many-body scars in spin models with multibody interactions
    Sanada, Kazuyuki
    Miao, Yuan
    Katsura, Hosho
    PHYSICAL REVIEW B, 2023, 108 (15)
  • [6] Understanding quantum work in a quantum many-body system
    Wang, Qian
    Quan, H. T.
    PHYSICAL REVIEW E, 2017, 95 (03)
  • [7] Quantum many-body systems out of equilibrium
    Eisert, J.
    Friesdorf, M.
    Gogolin, C.
    NATURE PHYSICS, 2015, 11 (02) : 124 - 130
  • [8] Quantum engine based on many-body localization
    Halpern, Nicole Yunger
    White, Christopher David
    Gopalakrishnan, Sarang
    Refael, Gil
    PHYSICAL REVIEW B, 2019, 99 (02)
  • [9] Time-reversal in a dipolar quantum many-body spin system
    Geier, Sebastian
    Braemer, Adrian
    Braun, Eduard
    Muellenbach, Maximilian
    Franz, Titus
    Gaerttner, Martin
    Zuern, Gerhard
    Weidemueller, Matthias
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [10] Quantum many-body scars in spin-1 Kitaev chains
    You, Wen-Long
    Zhao, Zhuan
    Ren, Jie
    Sun, Gaoyong
    Li, Liangsheng
    Oles, Andrzej M.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (01):