A Two-Stage Multi-Agent Deep Reinforcement Learning Method for Urban Distribution Network Reconfiguration Considering Switch Contribution

被引:10
|
作者
Gao, Hongjun [1 ]
Jiang, Siyuan [1 ]
Li, Zhengmao [2 ]
Wang, Renjun [1 ]
Liu, Youbo [1 ]
Liu, Junyong [1 ]
机构
[1] Sichuan Univ, Coll Elect Engn, Chengdu 610065, Peoples R China
[2] Aalto Univ, Sch Elect Engn, Espoo 02150, Finland
基金
中国国家自然科学基金;
关键词
Switches; Control systems; Substations; Aerospace electronics; Deep reinforcement learning; Distribution networks; Voltage; Urban distribution network (UDN); reconfiguration; switch contribution; multi-agent deep reinforcement learning (MADRL); enhanced QMIX algorithm; two-stage learning structure;
D O I
10.1109/TPWRS.2024.3371093
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the ever-escalating scale of urban distribution networks (UDNs), the traditional model-based reconfiguration methods are becoming inadequate for smart system control. On the contrary, the data-driven deep reinforcement learning method can facilitate the swift decision-making but the large action space would adversely affect the learning performance of its agents. Consequently, this paper presents a novel multi-agent deep reinforcement learning method for the reconfiguration of UDNs by introducing the concept of "switch contribution". First, a quantification method is proposed based on the mathematical UDN reconfiguration model. The contributions of controllable switches are effective quantified. By excluding the controllable switches with low contributions during network reconfiguration, the dimensionality of action space can be significantly reduced. Then, an improved QMIX algorithm is introduced to improve the policy of multiple agents by assigning the weights. Besides, a novel two-stage learning structure based on a reward-sharing mechanism is presented to further decompose tasks and enhance the learning efficiency of multiple agents. In the first stage, agents control the switches with higher contributions while switches with lower contributions will be controlled in the second stage. During the two-stage process, the proposed reward-sharing mechanism could guarantee a reliable UND reconfiguration and the convergence of our learning method. Finally, numerical results based on a practical 297-node system are performed to validate our method's effectiveness.
引用
收藏
页码:7064 / 7076
页数:13
相关论文
共 50 条
  • [1] A multi-agent reinforcement learning method for distribution system restoration considering dynamic network reconfiguration
    Si, Ruiqi
    Chen, Siyuan
    Zhang, Jun
    Xu, Jian
    Zhang, Luxi
    APPLIED ENERGY, 2024, 372
  • [2] Two-Stage Volt/Var Control in Active Distribution Networks With Multi-Agent Deep Reinforcement Learning Method
    Sun, Xianzhuo
    Qiu, Jing
    IEEE TRANSACTIONS ON SMART GRID, 2021, 12 (04) : 2903 - 2912
  • [3] Two-stage Distribution Network Reconfiguration Method Considering Load Type and Overload Rate
    Chen, Yunchao
    Liu, Jintao
    Hu, Jiajia
    Wu, Jiafang
    Zhu, Yafei
    Chen, Guoqiang
    Chen, Gang
    Xia, Lei
    Hu, Yi
    Zhang, Shuwei
    Yang, Jian
    PROCEEDINGS OF THE 2021 IEEE 16TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2021), 2021, : 323 - 328
  • [4] Application of Traffic Light Control in Oversaturated Urban Network Using Multi-Agent Deep Reinforcement Learning
    Ei Mon, Ei
    Ochiai, Hideya
    Aswakul, Chaodit
    IEEE ACCESS, 2024, 12 : 82384 - 82395
  • [5] Distributed secondary control for DC microgrids using two-stage multi-agent reinforcement learning
    Li, Fei
    Tu, Weifei
    Zhou, Yun
    Li, Heng
    Zhou, Feng
    Liu, Weirong
    Hu, Chao
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2025, 164
  • [6] Deep reinforcement learning for multi-agent interaction
    Ahmed, Ibrahim H.
    Brewitt, Cillian
    Carlucho, Ignacio
    Christianos, Filippos
    Dunion, Mhairi
    Fosong, Elliot
    Garcin, Samuel
    Guo, Shangmin
    Gyevnar, Balint
    McInroe, Trevor
    Papoudakis, Georgios
    Rahman, Arrasy
    Schafer, Lukas
    Tamborski, Massimiliano
    Vecchio, Giuseppe
    Wang, Cheng
    Albrecht, Stefano, V
    AI COMMUNICATIONS, 2022, 35 (04) : 357 - 368
  • [7] Multi-Agent Deep Reinforcement Learning for Distributed Load Restoration
    Linh Vu
    Tuyen Vu
    Thanh Long Vu
    Srivastava, Anurag
    IEEE TRANSACTIONS ON SMART GRID, 2024, 15 (02) : 1749 - 1760
  • [8] Real-Time Operation Optimization in Active Distribution Networks Based on Multi-Agent Deep Reinforcement Learning
    Xu, Jie
    Gao, Hongjun
    Wang, Renjun
    Liu, Junyong
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2024, 12 (03) : 886 - 899
  • [9] Safe Multi-Agent Deep Reinforcement Learning for Dynamic Virtual Network Allocation
    Suzuki, Akito
    Harada, Shigeaki
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [10] Network slicing for vehicular communications: a multi-agent deep reinforcement learning approach
    Mlika, Zoubeir
    Cherkaoui, Soumaya
    ANNALS OF TELECOMMUNICATIONS, 2021, 76 (9-10) : 665 - 683