Predicting peritumoral glioblastoma infiltration and subsequent recurrence using deep-learning-based analysis of multi-parametric magnetic resonance imaging

被引:1
作者
Kwak, Sunwoo [1 ,2 ]
Akbari, Hamed [3 ]
Garcia, Jose A. [1 ,2 ]
Mohan, Suyash [1 ,2 ]
Dicker, Yehuda [4 ]
Sako, Chiharu [1 ,2 ]
Matsumoto, Yuji [1 ]
Nasrallah, MacLean P. [1 ,5 ]
Shalaby, Mahmoud [6 ]
O'Rourke, Donald M. [7 ]
Shinohara, Russel T. [2 ,8 ]
Liu, Fang [8 ]
Badve, Chaitra [9 ]
Barnholtz-Sloan, Jill S. [10 ]
Sloan, Andrew E. [11 ]
Lee, Matthew [12 ]
Jain, Rajan [12 ,13 ]
Cepeda, Santiago [14 ]
Chakravarti, Arnab [15 ]
Palmer, Joshua D. [15 ]
Dicker, Adam P. [16 ]
Shukla, Gaurav [16 ]
Flanders, Adam E. [16 ]
Shi, Wenyin [16 ]
Woodworth, Graeme F. [17 ]
Davatzikos, Christos [1 ,2 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Radiol, Philadelphia, PA 19104 USA
[2] Univ Penn, Ctr Biomed Image Comp & Analyt, Perelman Sch Med, Philadelphia, PA 19104 USA
[3] Santa Clara Univ, Sch Engn, Dept Bioengn, Santa Clara, CA USA
[4] Columbia Univ, Sch Engn, Dept Comp Sci, New York, NY USA
[5] Univ Penn, Perelman Sch Med, Dept Pathol & Lab Med, Philadelphia, PA USA
[6] Mercy Catholic Med Ctr, Dept Radiol, Philadelphia, PA USA
[7] Univ Penn, Perelman Sch Med, Dept Neurosurg, Philadelphia, PA USA
[8] Univ Penn, Perelman Sch Med, Dept Biostat & Epidemiol, Philadelphia, PA USA
[9] Case Western Reserve Univ, Univ Hosp Cleveland Med Ctr, Dept Radiol, Cleveland, OH USA
[10] NCI, Ctr Biomed Informat & Informat Technol, Div Canc Epidemiol & Genet, Bethesda, MD USA
[11] Piedmont Healthcare, Div Neurosci, Atlanta, GA USA
[12] NYU, Dept Radiol, Grossman Sch Med, New York, NY USA
[13] NYU, Dept Neurosurg, Grossman Sch Med, New York, NY USA
[14] Univ Hosp Rio Hortega, Valladolid, Spain
[15] Ohio State Univ, Dept Radiat Oncol, Wexner Med Ctr, Columbus, OH USA
[16] Thomas Jefferson Univ, Haverford, PA USA
[17] Univ Maryland, Adelphi, MD USA
基金
美国国家卫生研究院;
关键词
glioblastoma; deep learning; infiltration; recurrence; multi-parametric MRI; PATTERN-ANALYSIS; GLIOMA; BRAIN; RADIOTHERAPY; RESECTION; SURVIVAL; EXTENT; TEMOZOLOMIDE;
D O I
10.1117/1.JMI.11.5.054001
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Glioblastoma (GBM) is the most common and aggressive primary adult brain tumor. The standard treatment approach is surgical resection to target the enhancing tumor mass, followed by adjuvant chemoradiotherapy. However, malignant cells often extend beyond the enhancing tumor boundaries and infiltrate the peritumoral edema. Traditional supervised machine learning techniques hold potential in predicting tumor infiltration extent but are hindered by the extensive resources needed to generate expertly delineated regions of interest (ROIs) for training models on tissue most and least likely to be infiltrated. Approach: We developed a method combining expert knowledge and training-based data augmentation to automatically generate numerous training examples, enhancing the accuracy of our model for predicting tumor infiltration through predictive maps. Such maps can be used for targeted supra-total surgical resection and other therapies that might benefit from intensive yet well-targeted treatment of infiltrated tissue. We apply our method to preoperative multi-parametric magnetic resonance imaging (mpMRI) scans from a subset of 229 patients of a multi-institutional consortium (Radiomics Signatures for Precision Diagnostics) and test the model on subsequent scans with pathology-proven recurrence. Results: Leave-one-site-out cross-validation was used to train and evaluate the tumor infiltration prediction model using initial pre-surgical scans, comparing the generated prediction maps with follow-up mpMRI scans confirming recurrence through post-resection tissue analysis. Performance was measured by voxel-wised odds ratios (ORs) across six institutions: University of Pennsylvania (OR: 9.97), Ohio State University (OR: 14.03), Case Western Reserve University (OR: 8.13), New York University (OR: 16.43), Thomas Jefferson University (OR: 8.22), and Rio Hortega (OR: 19.48). Conclusions: The proposed model demonstrates that mpMRI analysis using deep learning can predict infiltration in the peri-tumoral brain region for GBM patients without needing to train a model using expert ROI drawings. Results for each institution demonstrate the model's generalizability and reproducibility.
引用
收藏
页数:17
相关论文
共 43 条
  • [1] Imaging Surrogates of Infiltration Obtained Via Multiparametric Imaging Pattern Analysis Predict Subsequent Location of Recurrence of Glioblastoma
    Akbari, Hamed
    Macyszyn, Luke
    Da, Xiao
    Bilello, Michel
    Wolf, Ronald L.
    Martinez-Lage, Maria
    Biros, George
    Alonso-Basanta, Michelle
    O'Rourke, Donald M.
    Davatzikos, Christos
    [J]. NEUROSURGERY, 2016, 78 (04) : 572 - 580
  • [2] Pattern Analysis of Dynamic Susceptibility Contrast-enhanced MR Imaging Demonstrates Peritumoral Tissue Heterogeneity
    Akbari, Hamed
    Macyszyn, Luke
    Da, Xiao
    Wolf, Ronald L.
    Bilello, Michel
    Verma, Ragini
    O'Rourke, Donald M.
    Davatzikos, Christos
    [J]. RADIOLOGY, 2014, 273 (02) : 502 - 510
  • [3] Baid U, 2021, Arxiv, DOI arXiv:2107.02314
  • [4] The University of Pennsylvania glioblastoma (UPenn-GBM) cohort: advanced MRI, clinical, genomics, & radiomics
    Bakas, Spyridon
    Sako, Chiharu
    Akbari, Hamed
    Bilello, Michel
    Sotiras, Aristeidis
    Shukla, Gaurav
    Rudie, Jeffrey D.
    Santamaria, Natali Flores
    Kazerooni, Anahita Fathi
    Pati, Sarthak
    Rathore, Saima
    Mamourian, Elizabeth
    Ha, Sung Min
    Parker, William
    Doshi, Jimit
    Baid, Ujjwal
    Bergman, Mark
    Binder, Zev A.
    Verma, Ragini
    Lustig, Robert A.
    Desai, Arati S.
    Bagley, Stephen J.
    Mourelatos, Zissimos
    Morrissette, Jennifer
    Watt, Christopher D.
    Brem, Steven
    Wolf, Ronald L.
    Melhem, Elias R.
    Nasrallah, MacLean P.
    Mohan, Suyash
    O'Rourke, Donald M.
    Davatzikos, Christos
    [J]. SCIENTIFIC DATA, 2022, 9 (01)
  • [5] Bakas S, 2019, Arxiv, DOI [arXiv:1811.02629, DOI 10.48550/ARXIV.1811.02629]
  • [6] Overall survival prediction in glioblastoma patients using structural magnetic resonance imaging (MRI): advanced radiomic features may compensate for lack of advanced MRI modalities
    Bakas, Spyridon
    Shukla, Gaurav
    Akbari, Hamed
    Erus, Guray
    Sotiras, Aristeidis
    Rathore, Saima
    Sako, Chiharu
    Ha, Sung Min
    Rozycki, Martin
    Shinohara, Russell T.
    Bilello, Michel
    Davatzikos, Christos
    [J]. JOURNAL OF MEDICAL IMAGING, 2020, 7 (03)
  • [7] Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features
    Bakas, Spyridon
    Akbari, Hamed
    Sotiras, Aristeidis
    Bilello, Michel
    Rozycki, Martin
    Kirby, Justin S.
    Freymann, John B.
    Farahani, Keyvan
    Davatzikos, Christos
    [J]. SCIENTIFIC DATA, 2017, 4
  • [8] Regional variation in histopathologic features of tumor specimens from treatment-naive glioblastoma correlates with anatomic and physiologic MR Imaging
    Barajas, Ramon F., Jr.
    Phillips, Joanna J.
    Parvataneni, Rupa
    Molinaro, Annette
    Essock-Burns, Emma
    Bourne, Gabriela
    Parsa, Andrew T.
    Aghi, Manish K.
    McDermott, Michael W.
    Berger, Mitchel S.
    Cha, Soonmee
    Chang, Susan M.
    Nelson, Sarah J.
    [J]. NEURO-ONCOLOGY, 2012, 14 (07) : 942 - 954
  • [9] Recurrent Glioblastoma: From Molecular Landscape to New Treatment Perspectives
    Birzu, Cristina
    French, Pim
    Caccese, Mario
    Cerretti, Giulia
    Idbaih, Ahmed
    Zagonel, Vittorina
    Lombardi, Giuseppe
    [J]. CANCERS, 2021, 13 (01) : 1 - 29
  • [10] Association of the Extent of Resection With Survival in Glioblastoma A Systematic Review and Meta-analysis
    Brown, Timothy J.
    Brennan, Matthew C.
    Li, Michael
    Church, Ephraim W.
    Brandmeir, Nicholas J.
    Rakszawski, Kevin L.
    Patel, Akshal S.
    Rizk, Elias B.
    Suki, Dima
    Sawaya, Raymond
    Glantz, Michael
    [J]. JAMA ONCOLOGY, 2016, 2 (11) : 1460 - 1469