Multimodal Data-Driven Prediction of PEMFC Performance and Process Conditions Using Deep Learning

被引:0
|
作者
Shin, Seoyoon [1 ]
Kim, Jiwon [1 ]
Lee, Seokhee [1 ]
Shin, Tae Ho [1 ]
Ryu, Ga-Ae [1 ]
机构
[1] Korea Inst Ceram Engn & Technol, Hydrogen Digital Convergence Ctr, Jinju Si 52851, Gyeongsangnam D, South Korea
来源
IEEE ACCESS | 2024年 / 12卷
基金
新加坡国家研究基金会;
关键词
Catalysts; Ink; Predictive models; Artificial intelligence; Fuel cells; Data models; Manufacturing; Deep learning; Convolutional neural networks; Temperature measurement; Multimodal sensors; Manufacturing optimization; proton-exchange membrane fuel cell; multimodal data; data-driven prediction; artificial intelligence; OPTIMIZATION;
D O I
10.1109/ACCESS.2024.3472849
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The proton-exchange membrane fuel cell (PEMFC) is one of the important technologies advancing sustainable energy. However, predicting its performance and optimizing processes is challenging due to the complexity of integrating various types of data with interdependent variables. This study introduces a novel deep learning model using multimodal data that integrated convolutional neural networks (CNN) and deep neural networks (DNN) to address these challenges. The proposed model predicts the performance through the CNN model using cell images taken from the optical microscope, and based on this, generates multimodal data to predict the optimal process conditions for each performance through the DNN model. Trained on a diverse array of experimental data under various conditions, our model significantly enhances the reliability of performance predictions and optimal process determinations, evidenced by an R-2 value of 0.83. Unique to this research, the AI model utilizes both PEMFC cell images and performance data, enabling automatic performance prediction and substantially reducing the need for individual cell measurements. By analyzing both morphological images and experimental data, our model accurately predicts optimal process conditions, overcoming previous integration challenges. This method not only facilitates the performance assessment process but also optimizes manufacturing operations, thereby increasing efficiency and production rates in PEMFC manufacturing.
引用
收藏
页码:168030 / 168042
页数:13
相关论文
共 50 条
  • [31] Machine Learning and Deep Learning Methods in Mining Operations: a Data-Driven SAG Mill Energy Consumption Prediction Application
    Avalos, Sebastian
    Kracht, Willy
    Ortiz, Julian M.
    MINING METALLURGY & EXPLORATION, 2020, 37 (04) : 1197 - 1212
  • [32] From machine learning to deep learning: Advances of the recent data-driven paradigm shift in medicine and healthcare
    Chakraborty, Chiranjib
    Bhattacharya, Manojit
    Pal, Soumen
    Lee, Sang-Soo
    CURRENT RESEARCH IN BIOTECHNOLOGY, 2024, 7
  • [33] Data-driven deep learning prediction of full molecular weight distribution in polymerization processes
    Mora-Mariano, Dante
    Flores-Tlacuahuac, Antonio
    Zapata-Gonzalez, Ivan
    Saldivar-Guerra, Enrique
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2025,
  • [34] Data-driven deep learning prediction of boron-doped graphene work function
    Lu, Yunhua
    Yu, Jintao
    Zhang, Qingwei
    Zhang, Junan
    Zhang, Chao
    Bi, Qiuyan
    MATERIALS TODAY COMMUNICATIONS, 2024, 40
  • [35] Monthly Arctic sea ice prediction based on a data-driven deep learning model
    Huan, Xiaohe
    Wang, Jielong
    Liu, Zhongfang
    ENVIRONMENTAL RESEARCH COMMUNICATIONS, 2023, 5 (10):
  • [36] A data-driven prediction for concrete crack propagation path based on deep learning method
    Lei, Jiawei
    Xu, Chengkan
    Liu, Chaofeng
    Feng, Qian
    Zhang, He
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 21
  • [37] Multimodal Deep Learning for Prognosis Prediction in Renal Cancer
    Schulz, Stefan
    Woerl, Ann-Christin
    Jungmann, Florian
    Glasner, Christina
    Stenzel, Philipp
    Strobl, Stephanie
    Fernandez, Aurelie
    Wagner, Daniel-Christoph
    Haferkamp, Axel
    Mildenberger, Peter
    Roth, Wilfried
    Foersch, Sebastian
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [38] Mixing process-based and data-driven approaches in yield prediction
    Maestrini, Bernardo
    Mimic, Gordan
    van Oort, Pepijn A. J.
    Jindo, Keiji
    Brdar, Sanja
    Athanasiados, Ioannis N.
    van Evert, Frits K.
    EUROPEAN JOURNAL OF AGRONOMY, 2022, 139
  • [39] Data-driven modeling and learning in science and engineering
    Montans, Francisco J.
    Chinesta, Francisco
    Gomez-Bombarelli, Rafael
    Kutz, J. Nathan
    COMPTES RENDUS MECANIQUE, 2019, 347 (11): : 845 - 855
  • [40] Novel Data-Driven Deep Learning Assisted CVA for Ironmaking System Prediction and Control
    Lou, Siwei
    Yang, Chunjie
    Zhang, Xujie
    Wu, Ping
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (12) : 4544 - 4548