Impact of a two-dimensional steep hill on wind turbine noise propagation

被引:1
作者
Colas, Jules [1 ]
Emmanuelli, Ariane [1 ]
Dragna, Didier [1 ]
Blanc-Benon, Philippe [1 ]
Cotte, Benjamin [2 ]
Stevens, Richard J. A. M. [3 ]
机构
[1] Univ Claude Bernard Lyon 1, Ecole Cent Lyon, CNRS, INSA Lyon,LMFA,UMR5509, F-69130 Ecully, France
[2] Inst Polytech Paris, Inst Mech Sci & Ind Applicat IMSIA, ENSTA Paris, CNRS,CEA,EDF, Palaiseau, France
[3] Univ Twente, Max Planck Ctr Complex Fluid Dynam, JM Burgers Ctr Fluid Dynam, Phys Fluids Grp, POB 217, NL-7500 AE Enschede, Netherlands
基金
欧洲研究理事会;
关键词
LARGE-EDDY SIMULATIONS; SOUND-PROPAGATION; PARABOLIC EQUATION; NUMERICAL-SOLUTION; MODEL; FLOW; WAKE; DISSIPATION; PREDICTION; TURBULENCE;
D O I
10.5194/wes-9-1869-2024
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wind turbine noise propagation in a hilly terrain is studied through numerical simulation in different scenarios. Linearized Euler equations are solved in a moving frame that follows the wavefront, and wind turbine noise is modeled with an extended moving source. We employ large-eddy simulations to simulate the flow around the hill and the wind turbine. The sound pressure levels (SPLs) obtained for a wind turbine in front of a 2D hill and a wind turbine on a hilltop are compared to a baseline flat case. First, the source height and wind speed strongly affect sound propagation downwind. We find that topography influences the wake shape, inducing changes in the sound propagation that drastically modify the SPL downwind. Placing the turbine on the hilltop increases the average sound pressure level and amplitude modulation downwind. For the wind turbine placed upstream of a hill, a strong shielding effect is observed. But, because of the refraction by the wind gradient, levels are comparable with the baseline flat case just after the hill. Thus, considering how terrain topography alters the flow and wind turbine wake is essential to accurately predict wind turbine noise propagation.
引用
收藏
页码:1869 / 1884
页数:16
相关论文
共 49 条
  • [1] NOISE DUE TO TURBULENT-FLOW PAST A TRAILING EDGE
    AMIET, RK
    [J]. JOURNAL OF SOUND AND VIBRATION, 1976, 47 (03) : 387 - 393
  • [2] Outdoor ground impedance models
    Attenborough, Keith
    Bashir, Imran
    Taherzadeh, Shahram
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2011, 129 (05) : 2806 - 2819
  • [3] Variability of wind turbine noise over a diurnal cycle
    Barlas, Emre
    Wu, Ka Ling
    Zhu, Wei Jun
    Porte-Agel, Fernando
    Shen, Wen Zhong
    [J]. RENEWABLE ENERGY, 2018, 126 : 791 - 800
  • [4] Consistent modelling of wind turbine noise propagation from source to receiver
    Barlas, Emre
    Zhu, Wei Jun
    Shen, Wen Zhong
    Dag, Kaya O.
    Moriarty, Patrick
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2017, 142 (05) : 3297 - 3310
  • [5] Effects of wind turbine wake on atmospheric sound propagation
    Barlas, Emre
    Zhu, Wei Jun
    Shen, Wen Zhong
    Kelly, Mark
    Andersen, Soren Juhl
    [J]. APPLIED ACOUSTICS, 2017, 122 : 51 - 61
  • [6] A new analytical model for wind-turbine wakes
    Bastankhah, Majid
    Porte-Agel, Fernando
    [J]. RENEWABLE ENERGY, 2014, 70 : 116 - 123
  • [7] The Bolund Experiment, Part I: Flow Over a Steep, Three-Dimensional Hill
    Berg, J.
    Mann, J.
    Bechmann, A.
    Courtney, M. S.
    Jorgensen, H. E.
    [J]. BOUNDARY-LAYER METEOROLOGY, 2011, 141 (02) : 219 - 243
  • [8] Low-dissipation and low-dispersion fourth-order Runge-Kutta algorithm
    Berland, Julien
    Bogey, Christophe
    Bailly, Christophe
    [J]. COMPUTERS & FLUIDS, 2006, 35 (10) : 1459 - 1463
  • [9] A family of low dispersive and low dissipative explicit schemes for flow and noise computations
    Bogey, C
    Bailly, C
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 194 (01) : 194 - 214
  • [10] Wind farm noise prediction and auralization
    Bresciani, Andrea P. C.
    Maillard, Julien
    Finez, Arthur
    [J]. ACTA ACUSTICA, 2024, 8