The role of a tantalum interlayer in enhancing the properties of Fe3O4 thin films

被引:0
作者
Ngo, Hai Dang [1 ]
Truong, Vo Doan Thanh [1 ]
Le, Van Qui [2 ]
Pham, Hoai Phuong [3 ]
Pham, Thi Kim Hang [1 ]
机构
[1] Faculty of Applied Sciences, Ho Chi Minh University of Technology and Education, Ho Chi Minh City
[2] Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu
[3] NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City
关键词
buffer layer; Fe[!sub]3[!/sub]O[!sub]4[!/sub; magnetite; RF magnetron sputtering; spintronic;
D O I
10.3762/BJNANO.15.101
中图分类号
学科分类号
摘要
High spin polarization and low resistivity of Fe3O4 at room temperature have been an appealing topic in spintronics with various promising applications. High-quality Fe3O4 thin films are a must to achieve the goals. In this report, Fe3O4 films on different substrates (SiO2/Si(100), MgO(100), and MgO/Ta/SiO2/Si(100)) were fabricated at room temperature with radio-frequency (RF) sputtering and annealed at 450 °C for 2 h. The morphological, structural, and magnetic properties of the deposited samples were characterized with atomic force microscopy, X-ray diffractometry, and vibrating sample magnetometry. The polycrystalline Fe3O4 film grown on MgO/Ta/SiO2/Si(100) presented very interesting morphology and structure characteristics. More importantly, changes in grain size and structure due to the effect of the MgO/Ta buffering layers have a strong impact on saturation magnetization and coercivity of Fe3O4 thin films compared to cases of no or just a single buffering layer. © 2024 Ngo et al.; licensee Beilstein-Institut. License and terms: see end of document.
引用
收藏
页码:253 / 1259
页数:1006
相关论文
共 45 条
[1]  
Fonin M., Dedkov Y. S., Pentcheva R., Rudiger U., Guntherodt G., J. Phys.: Condens. Matter, 19, (2007)
[2]  
Jain S., Adeyeye A. O., Boothroyd C. B., J. Appl. Phys, 97, (2005)
[3]  
Ding S., Tian Y., Liu X., Zou Y., Dong H., Mi W., Hu W., Nano Res, 14, pp. 304-310, (2021)
[4]  
Hihath S., Kiehl R. A., van Benthem K., J. Appl. Phys, 116, (2014)
[5]  
Wolf S. A., Awschalom D. D., Buhrman R. A., Daughton J. M., von Molnar S., Roukes M. L., Chtchelkanova A. Y., Treger D. M., Science, 294, pp. 1488-1495, (2001)
[6]  
Wu P.-C., Chen P.-F., Do T. H., Hsieh Y.-H., Ma C.-H., Ha T. D., Wu K.-H., Wang Y.-J., Li H.-B., Chen Y.-C., Juang J.-Y., Yu P., Eng L. M., Chang C.-F., Chiu P.-W., Tjeng L. H., Chu Y.-H., ACS Appl. Mater. Interfaces, 8, pp. 33794-33801, (2016)
[7]  
Wang X., Liao Y., Zhang D., Wen T., Zhong Z., J. Mater. Sci. Technol, 34, pp. 1259-1272, (2018)
[8]  
Jiang K., Sun B., Yao M., Wang N., Hu W., Komarneni S., Microporous Mesoporous Mater, 265, pp. 189-194, (2018)
[9]  
Venkat G., Cox C. D. W., Voneshen D., Caruana A. J., Piovano A., Cropper M. D., Morrison K., Phys. Rev. Mater, 4, (2020)
[10]  
Pham T. K. H., Ribeiro M., Park J. H., Lee N. J., Kang K. H., Park E., Nguyen V. Q., Michel A., Yoon C. S., Cho S., Kim T. H., Sci. Rep, 8, (2018)