Fracture propagation characteristics of water and CO2 fracturing in continental shale reservoirs

被引:1
|
作者
Zhang, Xiaohuan [1 ]
Zhang, Shicheng [1 ]
Zou, Yushi [1 ]
Li, Ning [2 ]
Li, Jianmin [1 ,3 ]
Shi, Lei [4 ]
机构
[1] China Univ Petr, State Key Lab Petr Resources & Engn, Beijing, Peoples R China
[2] State Key Lab Shale Oil & Gas Enrichment Mech & Ef, Beijing, Peoples R China
[3] PetroChina Xinjiang Oilfield Co, Engn Technol Res Inst, Karamay, Peoples R China
[4] Xinjiang Xinyitong Petr Technol Co Ltd, Karamay, Peoples R China
基金
中国国家自然科学基金;
关键词
ACOUSTIC-EMISSION; GROWTH; ROCK; OIL; INJECTION;
D O I
10.1063/5.0234697
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Exploring the adaptability of CO2 and water-based fracturing to shale oil reservoirs is important for efficiently developing shale oil reservoirs. This study conducted fracturing experiments and acoustic emission (AE) monitoring on the Jurassic continental shale. Based on high-precision computed tomography scanning technology, digital reconstruction analysis of fracture morphology was carried out to quantitatively evaluate the complexity of fractures and the stimulation reservoir volume (SRV). The results show that the fracturing ability of a single water-based fracturing fluid is limited. Low-viscosity fracturing fluid tends to activate thin layers and has limited fracture height. High-viscosity fracturing fluid tends to result in a wide and simple fracture. A combination injection of low-viscosity and high-viscosity water-based fracturing fluid can comprehensively utilize the advantages of low-viscosity and high-viscosity fracturing fluids, effectively improving the complexity of fractures. CO2 fracturing is adaptable to Jurassic shale. The breakdown pressure of the supercritical CO2 (SC-CO2) fracturing is low. Branch fractures form, and laminas activate during SC-CO2 fracturing due to its high diffusivity. Under high-temperature and high-pressure conditions, the aqueous solution formed by mixing CO2 with water can promote the formation of complex fractures. Compared with water-based fracturing fluid, the complexity of fractures and effective stimulation reservoir volume (ESRV) increased by 8.7% and 47.6%, respectively. There is a high correlation between SRV and ESRV, and the proportion of AE shear activity is also highly correlated with the complexity of fractures. The results are expected to provide better fracturing schemes and effectiveness for continental shale oil reservoirs.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Features of fracture height propagation in cross-layer fracturing of shale oil reservoirs
    WANG Yizhao
    HOU Bing
    WANG Dong
    JIA Zhenhua
    Petroleum Exploration and Development, 2021, 48 (02) : 469 - 479
  • [22] Analysis of Dry CO2 Fracturing Technology for Efficient Development of Shale Gas Reservoirs
    Luo, Xiangrong
    Wang, Shuzhong
    Jing, Zefeng
    Xu, Guixi
    PROCEEDINGS OF THE 2016 5TH INTERNATIONAL CONFERENCE ON MEASUREMENT, INSTRUMENTATION AND AUTOMATION (ICMIA 2016), 2016, 138 : 30 - 33
  • [23] Stimulation and Sequestration Mechanism of CO2 Waterless Fracturing for Continental Tight Oil Reservoirs
    Tao, Jiaping
    Meng, Siwei
    Jin, Xu
    Xu, Jianguo
    Yang, Qinghai
    Wang, Xiaoqi
    Liu, He
    Peng, Bo
    ACS OMEGA, 2021, 6 (32): : 20758 - 20767
  • [24] Study on mechanism of Pre-CO2 fracturing and analysis of sensitive factors for CO2 fracturing backflow in shale oil reservoirs
    Zhou, Xiaofeng
    Wang, Qingzhao
    Wei, Jianguang
    Cheng, Haoran
    Huang, Bin
    Shang, Demiao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 117 : 409 - 419
  • [25] Numerical modeling of fracture propagation of supercritical CO2 compound fracturing
    Chen, Hao
    Kang, Yong
    Jin, Wanchun
    Li, Changhai
    Cai, Can
    JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2024, 16 (07) : 2607 - 2628
  • [26] Fracture propagation morphology and parameter optimization design of pre-CO2 hybrid fracturing in shale oil reservoirs, Ordos Basin
    Zang, Yuxi
    Wang, Haizhu
    Wang, Bin
    Ni, Jun
    Wang, Tianyu
    Zhang, Wenhong
    Zhang, Ye
    Tian, Shouceng
    GEOENERGY SCIENCE AND ENGINEERING, 2024, 238
  • [27] Study on CO2 foam fracturing model and fracture propagation simulation
    Cong, Ziyuan
    Li, Yuwei
    Pan, Yishan
    Liu, Bo
    Shi, Ying
    Wei, Jianguang
    Li, Wei
    ENERGY, 2022, 238
  • [28] Characteristics of Fracture Propagation Induced by Supercritical CO2 in Inter-Salt-Shale Reservoir
    Zhang, Yixiang
    He, Jianming
    Li, Fengxia
    Fan, Xin
    Li, Xiao
    GEOFLUIDS, 2019,
  • [29] Recent advancements and practices of fracturing technology in continental shale reservoirs
    Zhang, Feng
    Lu, Mingjing
    Yang, Feng
    Cao, Gongze
    Zhang, Liaoyuan
    ADVANCES IN GEO-ENERGY RESEARCH, 2024, 13 (03): : 237 - 240
  • [30] Characteristics and effectiveness of water-assisted CO2 fracturing for creating geothermal reservoirs in volcanic rocks
    Pramudyo, Eko
    Takuma, Kohei
    Watanabe, Yuto
    Sakaguchi, Kiyotoshi
    Maeda, Yutaro
    Ogata, Sho
    Sueyoshi, Kazumasa
    Wang, Jiajie
    Osato, Kazumi
    Terai, Amane
    Watanabe, Noriaki
    GEOENERGY SCIENCE AND ENGINEERING, 2024, 243