Dependence of the hydrate-based CO2 storage characteristics on sand particle size and clay content in unconsolidated sediments

被引:2
|
作者
Wang, Jiaxian [1 ,2 ]
Ji, Yunkai [2 ,3 ]
Liu, Changling [2 ,3 ]
Ning, Fulong [1 ,3 ]
Meng, Qingguo [2 ,3 ]
Zhao, Yapeng [2 ,3 ]
Li, Jing [2 ,3 ]
Zhang, Zhun [1 ]
Zhang, Yongchao [2 ,3 ]
Cai, Feng [2 ,3 ]
机构
[1] China Univ Geosci, Fac Engn, Wuhan 430074, Peoples R China
[2] Minist Nat Resources, Qingdao Inst Marine Geol, Key Lab Gas Hydrate, Qingdao 266237, Peoples R China
[3] Qingdao Marine Sci & Technol Ctr, Lab Marine Mineral Resources, Qingdao 266237, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrate; Liquid CO 2; CO; 2; storage; Sand particle; Bentonite; Low-field NMR; CARBON-DIOXIDE HYDRATE; POROUS-MEDIA; OCEAN SEQUESTRATION; ENHANCED KINETICS; METHANE; DISSOCIATION; FIELD; SOIL; NUCLEATION; BED;
D O I
10.1016/j.cej.2024.157497
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Storing carbon dioxide (CO2) in the form of hydrate in marine sediments is considered an effective way of carbon reduction. Understanding the influence of sediment properties on CO2 hydrate formation is important for the site selection of CO2 hydrate storage in marine sediments. In this study, the effects of sand particle size and bentonite content on the kinetics of CO2 hydrate formation are analyzed using low-field nuclear magnetic resonance technology, and the hydrate-based liquid CO2 storage capacity is evaluated. Results show that CO2 hydrate forms preferentially in large pores of sand samples, the water content in small pores begins to decrease before the hydrate saturation reaches 20%, and the unhydrated water mainly concentrates in small pores. With the increase of sand particle size, the CO2 storage rate of the early rapid growth stage increases first and then decreases, the CO2 storage rate of the whole hydrate formation process decreases continuously, but the final CO2 storage density is weakly affected by sand particle size. With the increase of hydrate saturation, the CO2 storage rate undergoes a trend of rapid decrease, stability, rapid decrease, and low-speed decrease in sequence. The larger the sand particle size or the higher the bentonite content, the shorter the stability stage of CO2 storage rate. The effect of bentonite on CO2 storage rate is the promotion at low content, the inhibition at medium content, and the weakening of inhibition at high content. The sediments with more than 25% bentonite are beneficial to the storage of more CO2.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] CO2 competes with radioactive chemicals for freshwater recovery: Hydrate-based desalination
    Lim, Sol Geo
    Oh, Chang Yeop
    Kim, Sun Ha
    Ra, Kongtae
    Yoon, Ji-Ho
    JOURNAL OF HAZARDOUS MATERIALS, 2024, 462
  • [22] Recent advances in gas hydrate-based CO2 capture
    Dashti, Hossein
    Yew, Leonel Zhehao
    Lou, Xia
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2015, 23 : 195 - 207
  • [23] Formation and storage characteristics of CO2 hydrate in porous media: Effect of liquefaction amount on the formation rate, accumulation amount
    Zhang, Xuemin
    Wang, Jiaxian
    Yang, Huijie
    Li, Jinping
    Li, Yinhui
    Wu, Qingbai
    APPLIED THERMAL ENGINEERING, 2022, 214
  • [24] Kinetics of CO2 hydrate formation in clayey sand sediments: Implications for CO2 sequestration
    Mohamed, Abdirahman Hassan
    Sulaimon, Aliyu Adebayo
    Tsegab, Haylay
    Lal, Bhajan
    Singh, Aneel Jordan Atthi Tasan
    Ridha, Syahrir
    GAS SCIENCE AND ENGINEERING, 2024, 131
  • [25] Hydrate-based technology for CO2 capture from fossil fuel power plants
    Yang, Mingjun
    Song, Yongchen
    Jiang, Lanlan
    Zhao, Yuechao
    Ruan, Xuke
    Zhang, Yi
    Wang, Shanrong
    APPLIED ENERGY, 2014, 116 : 26 - 40
  • [26] Conceptual Design and Analysis of a Novel CO2 Hydrate-Based Refrigeration System with Cold Energy Storage
    Xie, Nan
    Tan, Chenghua
    Yang, Sheng
    Liu, Zhiqiang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (01) : 1502 - 1511
  • [27] Research Advances, Maturation, and Challenges of Hydrate-Based CO2 Sequestration in Porous Media
    Rehman, Amirun Nissa
    Bavoh, Cornelius B.
    Pendyala, Rajashekhar
    Lal, Bhajan
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (45) : 15075 - 15108
  • [28] Hydrate-based CO2 sequestration technology: Feasibilities, mechanisms, influencing factors, and applications
    Cao, Xuewen
    Wang, Hongchao
    Yang, Kairan
    Wu, Shichuan
    Chen, Qian
    Bian, Jiang
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 219
  • [29] A comprehensive review of the influence of particle size and pore distribution on the kinetics of CO2 hydrate formation in porous media
    Zhang, Xuemin
    Li, Pengyu
    Yuan, Qing
    Li, Jinping
    Shan, Tao
    Wu, Qingbai
    Wang, Yingmei
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2023, 13 (06) : 860 - 875
  • [30] Behaviour of hydrate-based technology for H2/CO2 separation in glass beads
    Yang, Mingjun
    Song, Yongchen
    Jiang, Lanlan
    Liu, Yu
    Wang, Xiaojing
    SEPARATION AND PURIFICATION TECHNOLOGY, 2015, 141 : 170 - 178