Topological Phononic Fiber of Second Spin-Chern Number

被引:2
|
作者
Lai, Hua-Shan [1 ,2 ]
Gou, Xiao-Hui [1 ,2 ]
He, Cheng [1 ,2 ,3 ,4 ]
Chen, Yan-Feng [1 ,2 ,3 ,4 ]
机构
[1] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Dept Mat Sci & Engn, Nanjing 210093, Peoples R China
[3] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
[4] Nanjing Univ, Jiangsu Key Lab Artificial Funct Mat, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
STATES; MODES;
D O I
10.1103/PhysRevLett.133.226602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The discovery of quantum spin Hall effect characterized by the first spin-Chern numbers in 2D systems has significantly advanced topological materials. To explore its 4D counterpart is of fundamental importance, but so far remains elusive in experiments. Here, we realize a topological phononic fiber protected by the second spin-Chern number in a 4D manifold, using a 3D geometric structure combined with a 1D rotational parameter space. We experimentally observe spin-momentum-locked core states traveling along a vortex line where the Dirac mass varies continuously. A novel higher-order face-centered bound state is further demonstrated. These findings underscore the interplay between higher-dimensional topological physics and defects, opening up a topological path for fibers.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Topological phases characterized by spin Chern number and skyrmion number in triangular Bose-Hubbard model
    Guo, Long-Fei
    Li, Peng
    MODERN PHYSICS LETTERS B, 2017, 31 (23):
  • [22] Proposal for a topological spin Chern pump
    Zhou, C. Q.
    Zhang, Y. F.
    Sheng, L.
    Shen, R.
    Sheng, D. N.
    Xing, D. Y.
    PHYSICAL REVIEW B, 2014, 90 (08)
  • [23] Second Chern Number and Non-Abelian Berry Phase in Topological Superconducting Systems
    Weisbrich, H.
    Klees, R. L.
    Rastelli, G.
    Belzig, W.
    PRX QUANTUM, 2021, 2 (01):
  • [24] Fractional Chern Insulators in Topological Flat Bands with Higher Chern Number
    Liu, Zhao
    Bergholtz, Emil J.
    Fan, Heng
    Laeuchli, Andreas M.
    PHYSICAL REVIEW LETTERS, 2012, 109 (18)
  • [25] Characterization of topological states on a lattice with Chern number
    Hafezi, M.
    Sorensen, A. S.
    Lukin, M. D.
    Demler, E.
    EPL, 2008, 81 (01)
  • [26] Nontrivial topological phase with a zero Chern number
    Wu, H. C.
    Jin, L.
    Song, Z.
    PHYSICAL REVIEW B, 2020, 102 (03)
  • [27] Probing Chern number by opacity and topological phase transition by a nonlocal Chern marker
    Molignini, Paolo
    Lapierre, Bastien
    Chitra, Ramasubramanian
    Chen, Wei
    SCIPOST PHYSICS CORE, 2023, 6 (03):
  • [28] Generating and detecting topological phases with higher Chern number
    Alase, Abhijeet
    Feder, David L.
    PHYSICAL REVIEW A, 2021, 103 (05)
  • [29] Fast adiabatic method for measuring topological Chern number
    ZhiHuang Luo
    Bei Zeng
    Science China Physics, Mechanics & Astronomy, 2018, 61
  • [30] Fast adiabatic method for measuring topological Chern number
    Luo, ZhiHuang
    Zeng, Bei
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2018, 61 (05)