Jiawei Wumei Wan alleviates renal fibrosis in diabetic nephropathy mice by regulating the PI3K/AKT/mTOR signaling pathway

被引:0
|
作者
Pi, Yijun [1 ]
Huang, Xu [2 ]
Cui, Chengji [2 ]
Li, Fan [3 ]
Zhang, Wenjing [4 ]
Yi, Chunguang [5 ]
Zhang, Shoulin [2 ]
机构
[1] Changchun Univ Chinese Med, Coll Tradit Chinese Med, Changchun 130117, Peoples R China
[2] Changchun Univ Chinese Med, Nephropathy Dept, Affiliated Hosp, Changchun 130021, Peoples R China
[3] Changchun Univ Chinese Med, Coll Integrated Chinese & Western Med, Changchun 130117, Peoples R China
[4] Tianjin Univ Chinese Med, Sch Chinese Mat Med, Tianjin 301617, Peoples R China
[5] Changchun Univ Chinese Med, Sch Basic Med, Changchun 130117, Peoples R China
关键词
Jiawei Wumei Wan; Diabetes nephropathy; Renal fibrosis; Network pharmacology; PI3K/AKT/mTOR signaling pathway; TNF RECEPTORS 1;
D O I
10.1016/j.cjac.2024.100446
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this study, network pharmacological and experimental analyses were implemented to verify the pharmacodynamic effects of Jiawei Wumei Wan (JWWMW) in the treating renal fibrosis in diabetic nephropathy (DN) and investigate its mechanism of action. Spontaneous type II diabetic mice were used to simulate the clinical DN model. JWWMW improved renal fibrosis in DN mice. Additionally, analyses of the body mass, blood sugar, 24 h urine output of mice, kidney mass, pathological morphology of renal tissues, and biochemical indices showed that JWWMW exerted therapeutic effects. Bioinformatics analyses also predicted that JWWMW may play a role in the biosynthetic process and pathway of lipid and atherosclerosis, as well as a role in the AGE-RAGE signaling pathway in diabetic complications. Western blotting results verified the reduction in lipid production after JWWMW treatment. This was facilitated by regulating the PI3K/AKT/mTOR signal pathway, thus preventing and treating renal fibrosis in DN. This study describes a scientific and theoretical approach to the clinical application of JWWMW.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Mangiferin Alleviates Renal Interstitial Fibrosis in Streptozotocin-Induced Diabetic Mice through Regulating the PTEN/PI3K/Akt Signaling Pathway
    Song, Yanyan
    Liu, Wei
    Tang, Ke
    Zang, Junting
    Li, Dong
    Gao, Hang
    JOURNAL OF DIABETES RESEARCH, 2020, 2020
  • [2] Hydroxychloroquine alleviates renal interstitial fibrosis by inhibiting the PI3K/Akt signaling pathway
    Li, Dengren
    Yu, Kuipeng
    Feng, Feng
    Zhang, Yang
    Bai, Fang
    Zhang, Yimeng
    Sun, Nan
    Fan, Jiahui
    Liu, Lei
    Yang, Huimin
    Yang, Xiangdong
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2022, 610 : 154 - 161
  • [3] Jiawei Shengjiangsan's Effect on Renal Injury in Diabetic Nephropathy Mice is Investigated via the PI3K/Akt/NF-κB Signaling Pathway
    Yang, Chenhua
    Huang, Fengling
    Fang, Huiqin
    Zang, Yunhua
    DIABETES METABOLIC SYNDROME AND OBESITY, 2024, 17 : 1687 - 1698
  • [4] The PI3K/Akt/mTOR signaling pathway
    Dennis, P. A.
    ANNALS OF ONCOLOGY, 2011, 22 : 19 - 19
  • [5] β-LAPachone is renoprotective in streptozotocin-induced diabetic mice via regulating the PI3K/Akt/mTOR signaling pathway
    Sanajou, Davoud
    Bahrambeigi, Saman
    Aslani, Somayeh
    IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES, 2021, 24 (05) : 650 - 656
  • [6] RAS Signaling in the PI3K/AKT/MTOR Pathway
    Nussinov, Ruth
    Zhang, Mingzhen
    Jang, Hyunbum
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 51A - 51A
  • [7] Fasudil suppresses renal fibrosis in diabetic rats through PI3K/AKT signaling pathway
    Han, Zenggang
    Wang, Zhenzhen
    Song, Chunquan
    Sheng, Jianmin
    Niu, Xinqing
    Qi, Pishui
    PANMINERVA MEDICA, 2023, 65 (01) : 119 - 120
  • [8] Aerobic Endurance Exercise Ameliorates Renal Vascular Sclerosis in Aged Mice by Regulating PI3K/AKT/mTOR Signaling Pathway
    Bao, Chuncha
    Yang, Zhong
    Li, Qian
    Cai, Qiyan
    Li, Hongli
    Shu, Bin
    DNA AND CELL BIOLOGY, 2020, 39 (02) : 310 - 320
  • [9] Baicalin improves podocyte injury in rats with diabetic nephropathy by inhibiting PI3K/Akt/ mTOR signaling pathway
    Ou, Yi
    Zhang, Wenjuan
    Chen, Shaopeng
    Deng, Haihua
    OPEN MEDICINE, 2021, 16 (01): : 1286 - 1298
  • [10] Yiqi Qingre Gao alleviates renal fibrosis in UUO mice via PI3K/AKT pathway
    Jin, Qi
    Li, Qian
    Yang, Liping
    Ma, Fang
    Mao, Huimin
    Wang, Yuyang
    Liu, Tongtong
    Peng, Liang
    Li, Ping
    Zhan, Yongli
    FRONTIERS IN PHARMACOLOGY, 2025, 16