Microstructure control in additively manufactured Ti-6Al-4V during high-power laser powder bed fusion

被引:0
|
作者
Dhiman, Sahil [1 ,2 ]
Chinthapenta, Viswanath [2 ]
Brandt, Milan [3 ]
Fabijanic, Daniel [4 ]
Xu, Wei [1 ]
机构
[1] Deakin Univ, Sch Engn, Waurn Ponds, Vic 3216, Australia
[2] Indian Inst Technol Hyderabad, Dept Mech & Aerosp Engn, Micromech Lab, NH-65, Kandi 502285, Telangana, India
[3] RMIT Univ, Ctr Addit Mfg, Sch Engn, Melbourne, VIC 3000, Australia
[4] Deakin Univ, Inst Frontier Mat, Waurn Ponds, Vic 3216, Australia
关键词
Additive manufacturing; Laser powder bed fusion; Ti-6Al-4V; Microstructure; Dimensional accuracy; BETA GRAIN-BOUNDARIES; MECHANICAL-PROPERTIES; TENSILE PROPERTIES; MARTENSITE DECOMPOSITION; PROCESSING PARAMETERS; PHASE-TRANSFORMATION; FRACTURE-TOUGHNESS; VARIANT SELECTION; HP-SLM; ALLOY;
D O I
10.1016/j.addma.2024.104573
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser powder bed fusion (LPBF) is a premier additive manufacturing (AM) process capable of making intricate metallic parts with short lead time, but its widespread industrial acceptance is still limited due to its low build rate in producing high-quality near net-shape parts. Herein, we have demonstrated the capability of employing high laser power LPBF for the manufacture of quality Ti-6Al-4V at a much-increased build rate, combined with decent dimensional accuracy, suitable microstructure, and superior mechanical performance. Compared to LPBF under low laser power (<= 400 W), high laser power (600 W) LPBF offers a much narrower processing window to reach a balance among dimensional accuracy, materials density, and desired microstructure. For a given high laser power, a combination of low scanning speed, small hatch spacing, and small focal offset distance imparts a thermal environment with reduced cooling rates to facilitate the formation of lamellar alpha+(3 or globular alpha microstructures at a much lower critical energy density than that under low power. The findings in this work advance our understanding of optimizing the LPBF process in the high-power regime towards sustainable and efficient manufacturing of quality Ti-6Al-4V components having superior mechanical performance.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Cryogenic temperature tensile properties of laser powder bed fused Ti-6Al-4V
    Radhakrishnan, Jayaraj
    Singh, Gaurav
    Kumar, Punit
    Nayan, Niraj
    Ramamurty, Upadrasta
    MATERIALIA, 2025, 39
  • [32] Investigation of fatigue behavior of laser powder bed fusion Ti-6Al-4V: Roles of heat treatment and microstructure
    Liu, Jianwen
    Zhang, Kai
    Liu, Jie
    Wang, Hao
    Yang, Yi
    Yan, Liangming
    Tian, Xinni
    Zhu, Yuman
    Huang, Aijun
    INTERNATIONAL JOURNAL OF FATIGUE, 2023, 176
  • [33] Recent advance in laser powder bed fusion of Ti-6Al-4V alloys: microstructure, mechanical properties and machinability
    Ni, Chenbing
    Zhu, Junjie
    Zhang, Baoguo
    An, Kai
    Wang, Youqiang
    Liu, Dejian
    Lu, Wei
    Zhu, Lida
    Liu, Changfu
    VIRTUAL AND PHYSICAL PROTOTYPING, 2025, 20 (01)
  • [34] Achieving isotropic microstructure in an additively manufactured Ti-6Al-4V alloy enabled by dual laser processing
    Kang, L. M.
    Xu, S. Q.
    Bai, Y. K.
    Qiu, Y. F.
    Pang, X.
    Zheng, J. M.
    Luo, X. C.
    Liu, H. L.
    Xian, B. C.
    Yang, C.
    SURFACE & COATINGS TECHNOLOGY, 2023, 470
  • [35] Interplay of strain and phase evolution of laser powder bed fusion Ti-6Al-4V
    Andrews, C.
    Heo, T. W.
    Shi, R.
    Basgul, C.
    Kurtz, S.
    Matthews, M. J.
    Taheri, M. L.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 855
  • [36] A physically-based structure-property model for additively manufactured Ti-6Al-4V
    Yang, Xinyu
    Barrett, Richard A.
    Harrison, Noel M.
    Leen, Sean B.
    MATERIALS & DESIGN, 2021, 205
  • [37] Additively manufactured Ti-6Al-4V alloy by high magnetic field heat treatment
    Zhao, R. X.
    Wang, J.
    Cao, T. W.
    Hu, T.
    Shuai, S. S.
    Xu, S. Z.
    Chen, C. Y.
    Ren, Z. M.
    Qian, M.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 871
  • [38] Orientation matters: Assessing the cyclic deformation behaviour of laser powder bed fusion Ti-6Al-4V
    Zhang, Jieming S.
    Liu, Huifang
    Tang, Yuanbo T.
    Lui, Andrew
    Grant, Patrick S.
    Alabort, Enrique
    Reed, Roger C.
    Cocks, Alan C. F.
    MATERIALS & DESIGN, 2024, 248
  • [39] Influence of Post-Processing Conditions on the Microstructure, Static, and Fatigue Resistance of Laser Powder Bed Fused Ti-6Al-4V Components
    Jimenez, Erika Herrera
    Kreitcberg, Alena
    Moquin, Etienne
    Brailovski, Vladimir
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2022, 6 (04):
  • [40] Grain boundary α-phase precipitation and coarsening: Comparing laser powder bed fusion with as-cast Ti-6Al-4V
    Liu, Jianwen
    Zhang, Kai
    Yang, Yi
    Wang, Hao
    Zhu, Yuman
    Huang, Aijun
    SCRIPTA MATERIALIA, 2022, 207