Interdependence Between the Extent of Ga Promotion, the Nature of Active Sites, and the Reaction Mechanism Over Cu Catalysts for CO2 Hydrogenation to Methanol

被引:1
|
作者
Gomez, Daviel [1 ,2 ]
Vergara, Tomas [3 ]
Ortega, Maray [4 ]
Diaconescu, Vlad Martin [5 ]
Simonelli, Laura [5 ]
Concepcion, Patricia [2 ]
Jimenez, Romel [1 ]
Karelovic, Alejandro [1 ]
机构
[1] Univ Concepcion, Fac Engn, Dept Chem Engn, Carbon & Catalysis Lab CarboCat, Concepcion 4070386, Chile
[2] Univ Politecn Valencia, Inst Tecnol Quim, Consejo Super Invest Cient UPV CSIC, Valencia 46022, Spain
[3] Karlsruher Inst Technol KIT, Inst Katalyseforsch & Technol IKFT, D-76344 Eggenstein Leopoldshafen, Germany
[4] Univ Bio Bio, Fac Engn, Wood Engn Dept, Lab Thermal & Catalyt Proc LPTC, Concepcion 4030000, Chile
[5] ALBA Synchrotron Radiat Facil, CELLS, Cerdanyola Del Valles 08290, Spain
来源
ACS CATALYSIS | 2024年 / 14卷 / 20期
关键词
gallium; copper; methanol synthesis; active site; reaction mechanism; SSITKA; TRANSIENT KINETIC-ANALYSIS; COPPER-BASED CATALYSTS; SUPPORT; ZNO; PERFORMANCE; CONVERSION; INTERFACE; SURFACES; CU/SIO2; STATE;
D O I
10.1021/acscatal.4c04577
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effect of low Ga contents on Cu/SiO2 catalysts was studied for the CO2 hydrogenation reaction. Catalysts were synthesized with different Ga2O3 contents by incipient wetness impregnation, resulting in similar average Cu nanoparticle sizes, between 6.0 and 6.6 nm. Characterization techniques such as IR-CO, quasi in situ XPS and in situ XAS, kinetic tests, in situ/operando diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and steady state isotopic transient kinetic analysis (SSITKA) were combined to disclose the promoting effect of Ga and its relationship with the nature of active sites and the reaction mechanism. It was found that a Cu+ site was formed at the Cu-Ga2O3 interface with the addition of a promoter, and it was demonstrated that this site allows the direct dissociation of CO2. The intrinsic rate of methanol formation on promoted catalysts increases by approximately 1 order of magnitude without significantly changing the intrinsic rate of CO formation. The same was observed for the apparent activation energies, which were constant for CO and decreasing for methanol, further depicting a change in the nature of active sites for the latter. On the unpromoted Cu catalyst, methanol is formed mainly on Cu0 through the formate pathway, while over Cu-Ga2O3 the main active site shifts to the Cu+ species generated at the interface, which moreover favored the reverse water-gas shift followed by the hydrogenation of carbonyl intermediates (RWGS + CO-Hydro). SSITKA experiments confirmed that Ga contributed positively to the formation and stabilization of additional active sites where methanol is formed; the amount of these sites increased with the loading of promoter. This was reflected as an increase in the measured number of intermediates that lead to methanol, while the coverage of intermediates that form CO remained constant, irrespective of Ga loading. It was further verified that the intrinsic reactivity ( TOF ITK) of the Cu+ site at the Cu-Ga2O3 interface is lower than that of the Cu monometallic catalyst, but this is balanced by the contribution of a greater number of these active sites. On the other hand, the CO formation rate was not modified. Therefore, it is concluded that Ga does not change the nature of the active sites involved in the CO formation. By combining state of the art characterization techniques, rational kinetic measurements, operando spectroscopy and isotopic labeling, this work clearly stablishes a relationship between Ga2O3 promotion, nature of active sites, and reaction mechanism over Cu catalyst.
引用
收藏
页码:15265 / 15278
页数:14
相关论文
共 50 条
  • [21] Dual active sites over Cu-ZnO-ZrO 2 catalysts for carbon dioxide hydrogenation to methanol
    Sun, Xiucheng
    Jin, Yifei
    Cheng, Zaizhe
    Lan, Guojun
    Wang, Xiaolong
    Qiu, Yiyang
    Wang, Yanjiang
    Liu, Huazhang
    Li, Ying
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2023, 131 : 162 - 172
  • [22] Exploring the reaction mechanism and kinetic properties of CO2 hydrogenation to methanol on Cu/CeO2
    Cao, Hong-Sheng
    Li, Shen
    Pan, Yun-Xiang
    Zhang, Xi-Bao
    Luo, Zheng-Hong
    CHEMICAL ENGINEERING SCIENCE, 2025, 304
  • [23] Recent progress in understanding the nature of active sites for methanol synthesis over Cu/ZnO catalysts
    Liu, Xinyu
    Wang, Hengwei
    Lu, Junling
    JOURNAL OF CATALYSIS, 2024, 436
  • [24] Stabilizing Cu+ in Cu/SiO2 Catalysts with a Shattuckite-Like Structure Boosts CO2 Hydrogenation into Methanol
    Yu, Jiafeng
    Yang, Meng
    Zhang, Jixin
    Ge, Qingjie
    Zimina, Anna
    Pruessmann, Tim
    Zheng, Lei
    Grunwaldt, Jan-Dierk
    Sun, Jian
    ACS CATALYSIS, 2020, 10 (24) : 14694 - 14706
  • [25] Insight Into the Dynamic Active Sites and Catalytic Mechanism for CO2 Hydrogenation Reaction
    Han, You
    Hong, Qin
    Liu, Chang-Jun
    Nian, Yao
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2025, 15 (01)
  • [26] Active sites in CO2 hydrogenation over confined VOx-Rh catalysts
    Wang, Guishuo
    Luo, Ran
    Yang, Chengsheng
    Song, Jimin
    Xiong, Chuanye
    Tian, Hao
    Zhao, Zhi-Jian
    Mu, Rentao
    Gong, Jinlong
    SCIENCE CHINA-CHEMISTRY, 2019, 62 (12) : 1710 - 1719
  • [27] Tailoring of Hydrotalcite-Derived Cu-Based Catalysts for CO2 Hydrogenation to Methanol
    Frusteri, Leone
    Cannilla, Catia
    Todaro, Serena
    Frusteri, Francesco
    Bonura, Giuseppe
    CATALYSTS, 2019, 9 (12)
  • [28] Comparison of the Promoted CuZnMxOy (M: Ga, Fe) Catalysts for CO2 Hydrogenation to Methanol
    Cai, Weijie
    Chen, Qing
    Wang, Fagen
    Li, Zhongcheng
    Yu, Hao
    Zhang, Shaoyin
    Cui, Li
    Li, Congming
    CATALYSIS LETTERS, 2019, 149 (09) : 2508 - 2518
  • [29] Mechanism of Methanol Synthesis on Cu through CO2 and CO Hydrogenation
    Grabow, L. C.
    Mavrikakis, M.
    ACS CATALYSIS, 2011, 1 (04): : 365 - 384
  • [30] CO2 hydrogenation to methanol over Cu-In intermetallic catalysts: Effect of reduction temperature
    Shi, Zhisheng
    Tan, Qingqing
    Tian, Chao
    Pan, Yu
    Sun, Xuewei
    Zhang, Jinxin
    Wu, Dongfang
    JOURNAL OF CATALYSIS, 2019, 379 : 78 - 89