Interdependence Between the Extent of Ga Promotion, the Nature of Active Sites, and the Reaction Mechanism Over Cu Catalysts for CO2 Hydrogenation to Methanol

被引:1
|
作者
Gomez, Daviel [1 ,2 ]
Vergara, Tomas [3 ]
Ortega, Maray [4 ]
Diaconescu, Vlad Martin [5 ]
Simonelli, Laura [5 ]
Concepcion, Patricia [2 ]
Jimenez, Romel [1 ]
Karelovic, Alejandro [1 ]
机构
[1] Univ Concepcion, Fac Engn, Dept Chem Engn, Carbon & Catalysis Lab CarboCat, Concepcion 4070386, Chile
[2] Univ Politecn Valencia, Inst Tecnol Quim, Consejo Super Invest Cient UPV CSIC, Valencia 46022, Spain
[3] Karlsruher Inst Technol KIT, Inst Katalyseforsch & Technol IKFT, D-76344 Eggenstein Leopoldshafen, Germany
[4] Univ Bio Bio, Fac Engn, Wood Engn Dept, Lab Thermal & Catalyt Proc LPTC, Concepcion 4030000, Chile
[5] ALBA Synchrotron Radiat Facil, CELLS, Cerdanyola Del Valles 08290, Spain
来源
ACS CATALYSIS | 2024年 / 14卷 / 20期
关键词
gallium; copper; methanol synthesis; active site; reaction mechanism; SSITKA; TRANSIENT KINETIC-ANALYSIS; COPPER-BASED CATALYSTS; SUPPORT; ZNO; PERFORMANCE; CONVERSION; INTERFACE; SURFACES; CU/SIO2; STATE;
D O I
10.1021/acscatal.4c04577
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effect of low Ga contents on Cu/SiO2 catalysts was studied for the CO2 hydrogenation reaction. Catalysts were synthesized with different Ga2O3 contents by incipient wetness impregnation, resulting in similar average Cu nanoparticle sizes, between 6.0 and 6.6 nm. Characterization techniques such as IR-CO, quasi in situ XPS and in situ XAS, kinetic tests, in situ/operando diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and steady state isotopic transient kinetic analysis (SSITKA) were combined to disclose the promoting effect of Ga and its relationship with the nature of active sites and the reaction mechanism. It was found that a Cu+ site was formed at the Cu-Ga2O3 interface with the addition of a promoter, and it was demonstrated that this site allows the direct dissociation of CO2. The intrinsic rate of methanol formation on promoted catalysts increases by approximately 1 order of magnitude without significantly changing the intrinsic rate of CO formation. The same was observed for the apparent activation energies, which were constant for CO and decreasing for methanol, further depicting a change in the nature of active sites for the latter. On the unpromoted Cu catalyst, methanol is formed mainly on Cu0 through the formate pathway, while over Cu-Ga2O3 the main active site shifts to the Cu+ species generated at the interface, which moreover favored the reverse water-gas shift followed by the hydrogenation of carbonyl intermediates (RWGS + CO-Hydro). SSITKA experiments confirmed that Ga contributed positively to the formation and stabilization of additional active sites where methanol is formed; the amount of these sites increased with the loading of promoter. This was reflected as an increase in the measured number of intermediates that lead to methanol, while the coverage of intermediates that form CO remained constant, irrespective of Ga loading. It was further verified that the intrinsic reactivity ( TOF ITK) of the Cu+ site at the Cu-Ga2O3 interface is lower than that of the Cu monometallic catalyst, but this is balanced by the contribution of a greater number of these active sites. On the other hand, the CO formation rate was not modified. Therefore, it is concluded that Ga does not change the nature of the active sites involved in the CO formation. By combining state of the art characterization techniques, rational kinetic measurements, operando spectroscopy and isotopic labeling, this work clearly stablishes a relationship between Ga2O3 promotion, nature of active sites, and reaction mechanism over Cu catalyst.
引用
收藏
页码:15265 / 15278
页数:14
相关论文
共 50 条
  • [1] CATALYSIS Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts
    Kattel, Shyam
    Ramirez, Pedro J.
    Chen, Jingguang G.
    Rodriguez, Jose A.
    Liu, Ping
    SCIENCE, 2017, 355 (6331) : 1296 - +
  • [2] The Mechanism of CO and CO2 Hydrogenation to Methanol over Cu-Based Catalysts
    Studt, Felix
    Behrens, Malte
    Kunkes, Edward L.
    Thomas, Nygil
    Zander, Stefan
    Tarasov, Andrey
    Schumann, Julia
    Frei, Elias
    Varley, Joel B.
    Abild-Pedersen, Frank
    Norskov, Jens K.
    Schloegl, Robert
    CHEMCATCHEM, 2015, 7 (07) : 1105 - 1111
  • [3] Enhanced CO2 hydrogenation to methanol over CuZn nanoalloy in Ga modified Cu/ZnO catalysts
    Li, Molly Meng-Jung
    Zeng, Ziyan
    Liao, Fenglin
    Hong, Xinlin
    Tsang, Shik Chi Edman
    JOURNAL OF CATALYSIS, 2016, 343 : 157 - 167
  • [4] Catalytic hydrogenation of CO2 to methanol over Cu-based catalysts: Active sites profiling and regulation strategy as well as reaction pathway exploration
    Liang, Huichang
    Zhang, Guohai
    Li, Zhiyu
    Zhang, Yuchun
    Fu, Peng
    FUEL PROCESSING TECHNOLOGY, 2023, 252
  • [5] The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol
    Bonura, G.
    Cordaro, M.
    Cannilla, C.
    Arena, F.
    Frusteri, F.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 152 : 152 - 161
  • [6] Comment on "Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts"
    Nakamura, Junji
    Fujitani, Tadahiro
    Kuld, Sebastian
    Helveg, Stig
    Chorkendorff, Ib
    Sehested, Jens
    SCIENCE, 2017, 357 (6354)
  • [7] Catalytic consequences of Ga promotion on Cu for CO2 hydrogenation to methanol
    Medina, Juan C.
    Figueroa, Manuel
    Manrique, Raydel
    Rodriguez Pereira, Jhonatan
    Srinivasan, Priya D.
    Bravo-Saurez, Juan J.
    Baldovino Medrano, Victor G.
    Jimenez, Romel
    Karelovic, Alejandro
    CATALYSIS SCIENCE & TECHNOLOGY, 2017, 7 (15) : 3375 - 3387
  • [8] CO2 Hydrogenation to Methanol over Mesoporous SiO2-Coated Cu-Based Catalysts
    Vieira, Luiz H.
    Rossi, Marco A.
    Rasteiro, Leticia F.
    Assaf, Jose M.
    Assaf, Elisabete M.
    ACS NANOSCIENCE AU, 2024, 4 (04): : 235 - 242
  • [9] Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol
    Shi Y.
    Lin G.
    Sun X.
    Jiang W.
    Qiao D.
    Yan B.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2023, 42 : 287 - 298
  • [10] Synergy between active sites of Cu-In-Zr-O catalyst in CO2 hydrogenation to methanol
    Yao, Libo
    Shen, Xiaochen
    Pan, Yanbo
    Peng, Zhenmeng
    JOURNAL OF CATALYSIS, 2019, 372 : 74 - 85