Deep Learning Models for Coronary Atherosclerosis Detection in Coronary CT Angiography

被引:2
|
作者
Laidi, Amel [1 ]
Ammar, Mohammed [2 ]
Daho, Mostafa E. L. Habib [3 ]
Mahmoudi, Said [4 ]
机构
[1] MHamed Bougara Univ, Fac Technol, LIMOSE Lab, Boumerdes, Algeria
[2] Univ MHamed Bougara, Engn Syst & Telecommun Lab, Boumerdes, Algeria
[3] Biomed Engn Lab Abou Bekr Belkaid Univ, Fac Technol, Tilimsen, Algeria
[4] Univ Mons, Fac Engn, Comp Sci Dept, Mons, Belgium
关键词
Deep learning; Atherosclerosis; Coronary artery diseases; Wavelet decomposition; Angiography; Resnet101; NEURAL-NETWORKS; CARDIAC CT; PLAQUES;
D O I
10.2174/1573405619666221221092933
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background Patients with atherosclerosis have a rather high risk of showing complications, if not diagnosed quickly and efficiently.Objective In this paper we aim to test and compare different pre-trained deep learning models, to find the best model for atherosclerosis detection in coronary CT angiography.Methods We experimented with different pre-trained deep learning models and fine-tuned each model to achieve the best classification accuracy. We then used the Haar wavelet decomposition to improve the model's sensitivity.Results We found that the Resnet101 architecture had the best performance with an accuracy of 95.2%, 60.8% sensitivity, and 90.48% PPV. Compared to the state of the art which uses a 3D CNN and achieved 90.9% accuracy, 68.9% Sensitivity and 58.8% PPV, sensitivity was quite low. To improve the sensitivity, we chose to use the Haar wavelet decomposition and trained the CNN model with the module of the three details: Low_High, High_Low, and High_High. The best sensitivity reached 80% with the CNN_KNN classifier.Conclusion It is possible to perform atherosclerosis detection straight from CCTA images using a pretrained Resnet101, which has good accuracy and PPV. The low sensitivity can be improved using Haar wavelet decomposition and CNN-KNN classifier.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Deep Learning Analysis of Coronary Arteries in Cardiac CT Angiography for Detection of Patients Requiring Invasive Coronary Angiography
    Zreik, Majd
    van Hamersvelt, Robbert W.
    Khalili, Nadieh
    Wolterink, Jelmer M.
    Voskuil, Michiel
    Viergever, Max A.
    Leiner, Tim
    Isgum, Ivana
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (05) : 1545 - 1557
  • [2] Automated detection and classification of coronary atherosclerotic plaques on coronary CT angiography using deep learning algorithm
    Liang, Jing
    Zhou, Kefeng
    Chu, Michael P.
    Wang, Yujie
    Yang, Gang
    Li, Hui
    Chen, Wenping
    Yin, Kejie
    Xue, Qiucang
    Zheng, Chao
    Gu, Rong
    Li, Qiaoling
    Chen, Xingbiao
    Sheng, Zhihong
    Chu, Baocheng
    Mu, Dan
    Yu, Hongming
    Zhang, Bing
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2024, 14 (06) : 3837 - 3850
  • [3] Techniques for the detection of coronary atherosclerosis: Multi-detector row CT coronary angiography
    Vogl, TJ
    Abolmaali, ND
    Diebold, T
    Engelmann, K
    Ay, M
    Dogan, S
    Wimmer-Greinecker, G
    Moritz, A
    Herzog, C
    RADIOLOGY, 2002, 223 (01) : 212 - 220
  • [4] Deep learning–based atherosclerotic coronary plaque segmentation on coronary CT angiography
    Natasa Jávorszky
    Bálint Homonnay
    Gary Gerstenblith
    David Bluemke
    Péter Kiss
    Mihály Török
    David Celentano
    Hong Lai
    Shenghan Lai
    Márton Kolossváry
    European Radiology, 2022, 32 : 7217 - 7226
  • [5] Coronary CT angiography and coronary atherosclerosis: Where do we stand today?
    Achenbach S.
    Herz, 2023, 48 (5) : 352 - 358
  • [6] Patterns of coronary artery atherosclerosis in CT angiography
    Wasilewski, Jaroslaw
    Miszalski-Jamka, Karol
    Glowacki, Jan
    KARDIOCHIRURGIA I TORAKOCHIRURGIA POLSKA-POLISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2010, 7 (04) : 458 - 461
  • [7] Deep learning-based atherosclerotic coronary plaque segmentation on coronary CT angiography
    Javorszky, Natasa
    Homonnay, Balint
    Gerstenblith, Gary
    Bluemke, David
    Kiss, Peter
    Torok, Mihaly
    Celentano, David
    Lai, Hong
    Lai, Shenghan
    Kolossvary, Marton
    EUROPEAN RADIOLOGY, 2022, 32 (10) : 7217 - 7226
  • [8] Calcium Scoring at Coronary CT Angiography Using Deep Learning
    Mu, Dan
    Bai, Junjie
    Chen, Wenping
    Yu, Hongming
    Liang, Jing
    Yin, Kejie
    Li, Hui
    Qing, Zhao
    He, Kelei
    Yang, Hao-Yu
    Zhang, Jinyao
    Yin, Youbing
    McLellan, Hunter W.
    Schoepf, U. Joseph
    Zhang, Bing
    RADIOLOGY, 2022, 302 (02) : 309 - 316
  • [9] Glycemic Status and Coronary Atherosclerosis in Asymptomatics: Evaluation by Coronary CT Angiography
    Na, Soo Jin
    Kim, Pum Joon
    Ihm, Sang-Hyun
    Kim, Jin Jin
    Seung, Ki-Bae
    Chang, Kiyuk
    CIRCULATION, 2014, 130
  • [10] Coronary artery disease detection using deep learning and ultrahigh-resolution photon-counting coronary CT angiography
    Brendel, Jan M.
    Walterspiel, Jonathan
    Hagen, Florian
    Kuebler, Jens
    Brendlin, Andreas S.
    Afat, Saif
    Paul, Jean-Francois
    Kuestner, Thomas
    Nikolaou, Konstantin
    Gawaz, Meinrad
    Greulich, Simon
    Krumm, Patrick
    Winkelmann, Moritz T.
    DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2025, 106 (02) : 68 - 75