Deep Learning-Based Joint Channel Prediction and Multibeam Precoding for LEO Satellite Internet of Things

被引:1
|
作者
Ying, Ming [1 ]
Chen, Xiaoming [1 ]
Qi, Qiao [2 ]
Gerstacker, Wolfgang [3 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
[2] Hangzhou Normal Univ, Sch Informat Sci & Technol, Hangzhou 311121, Peoples R China
[3] Univ Erlangen Nurnberg, Inst Digital Commun, D-91058 Erlangen, Germany
关键词
Satellites; Precoding; Low earth orbit satellites; Internet of Things; Downlink; Channel estimation; Satellite communications; Deep learning; multibeam precoding; channel prediction; LEO satellite Internet of Things; MASSIVE MIMO;
D O I
10.1109/TWC.2024.3406952
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Low earth orbit (LEO) satellite internet of things (IoT) is a promising way achieving global Internet of Everything, and thus has been widely recognized as an important component of sixth-generation (6G) wireless networks. Yet, due to high-speed movement of the LEO satellite, it is challenging to acquire timely channel state information (CSI) and design effective multibeam precoding for various IoT applications. To this end, this paper provides a deep learning (DL)-based joint channel prediction and multibeam precoding scheme under adverse environments, e.g., high Doppler shift, long propagation delay, and low satellite payload. Specifically, this paper first designs a DL-based channel prediction scheme by using convolutional neural networks (CNN) and long short term memory (LSTM), which predicts the CSI of current time slot according to that of previous time slots. With the predicted CSI, this paper designs a DL-based robust multibeam precoding scheme by using a channel augmentation method based on variational auto-encoder (VAE). Finally, extensive simulation results confirm the effectiveness and robustness of the proposed scheme in LEO satellite IoT.
引用
收藏
页码:13946 / 13960
页数:15
相关论文
共 50 条
  • [21] Deep Learning-based Channel Prediction for Wireless Physical Layer Security
    Martins, Joao
    Gomes, Marco
    Silva, Vitor
    Dinis, Rui
    2024 IEEE INTERNATIONAL MEDITERRANEAN CONFERENCE ON COMMUNICATIONS AND NETWORKING, MEDITCOM 2024, 2024, : 114 - 118
  • [22] A Deep Learning-Based Framework for Low Complexity Multiuser MIMO Precoding Design
    Zhang, Maojun
    Gao, Jiabao
    Zhong, Caijun
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (12) : 11193 - 11206
  • [23] Deep Learning-based Automatic Modulation Recognition Algorithm in Internet of Things
    Wang, Yu
    Gui, Guan
    Huang, Hao
    Wang, Jie
    Yin, Yue
    Zhou, Tian
    Zhao, Yu
    Sheng, Hong
    Zhu, Xiaomei
    PROCEEDINGS OF 2019 IEEE 2ND INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION AND COMMUNICATION TECHNOLOGY (ICEICT 2019), 2019, : 576 - 579
  • [24] Machine Learning-Based Attack Detection for the Internet of Things
    Bikila, Dawit Dejene
    Capek, Jan
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2025, 166
  • [25] Deep Learning-Based Channel Estimation
    Soltani, Mehran
    Pourahmadi, Vahid
    Mirzaei, Ali
    Sheikhzadeh, Hamid
    IEEE COMMUNICATIONS LETTERS, 2019, 23 (04) : 652 - 655
  • [26] Dual Driven Leaning for Joint Activity Detection and Channel Estimation in Multibeam LEO Satellite Communications
    Zheng, Shuntian
    Wu, Sheng
    Jia, Haoge
    Zhao, Jingjing
    Shi, Yuanming
    Jiang, Chunxiao
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2024, 18 (07) : 1194 - 1209
  • [27] Deep Learning-Based Joint CSI Feedback and Hybrid Precoding in FDD mmWave Massive MIMO Systems
    Sun, Qiang
    Zhao, Huan
    Wang, Jue
    Chen, Wei
    ENTROPY, 2022, 24 (04)
  • [28] Deep Learning-Based Joint Pilot Design and Channel Estimation for OFDM Systems
    Fu, Heng
    Si, Weijian
    Kim, Il-Min
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (08) : 4577 - 4590
  • [29] OFDM-Based Massive Connectivity for LEO Satellite Internet of Things
    Zuo, Yong
    Yue, Mingyang
    Zhang, Mingchen
    Li, Sixian
    Ni, Shaojie
    Yuan, Xiaojun
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (11) : 8244 - 8258
  • [30] Deep Learning Based Energy Consumption Prediction on Internet of Things Environment
    Balaji, S.
    Karthik, S.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 37 (01) : 727 - 743