Deep Learning-Based Joint Channel Prediction and Multibeam Precoding for LEO Satellite Internet of Things

被引:1
|
作者
Ying, Ming [1 ]
Chen, Xiaoming [1 ]
Qi, Qiao [2 ]
Gerstacker, Wolfgang [3 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
[2] Hangzhou Normal Univ, Sch Informat Sci & Technol, Hangzhou 311121, Peoples R China
[3] Univ Erlangen Nurnberg, Inst Digital Commun, D-91058 Erlangen, Germany
关键词
Satellites; Precoding; Low earth orbit satellites; Internet of Things; Downlink; Channel estimation; Satellite communications; Deep learning; multibeam precoding; channel prediction; LEO satellite Internet of Things; MASSIVE MIMO;
D O I
10.1109/TWC.2024.3406952
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Low earth orbit (LEO) satellite internet of things (IoT) is a promising way achieving global Internet of Everything, and thus has been widely recognized as an important component of sixth-generation (6G) wireless networks. Yet, due to high-speed movement of the LEO satellite, it is challenging to acquire timely channel state information (CSI) and design effective multibeam precoding for various IoT applications. To this end, this paper provides a deep learning (DL)-based joint channel prediction and multibeam precoding scheme under adverse environments, e.g., high Doppler shift, long propagation delay, and low satellite payload. Specifically, this paper first designs a DL-based channel prediction scheme by using convolutional neural networks (CNN) and long short term memory (LSTM), which predicts the CSI of current time slot according to that of previous time slots. With the predicted CSI, this paper designs a DL-based robust multibeam precoding scheme by using a channel augmentation method based on variational auto-encoder (VAE). Finally, extensive simulation results confirm the effectiveness and robustness of the proposed scheme in LEO satellite IoT.
引用
收藏
页码:13946 / 13960
页数:15
相关论文
共 50 条
  • [1] Deep Reinforcement Learning-Based Channel and Power Allocation in Multibeam LEO Satellite Systems
    Li, Junrong
    Peng, Fuzhou
    Wang, Xijun
    Chen, Xiang
    IOT AS A SERVICE, IOTAAS 2023, 2025, 585 : 103 - 116
  • [2] Deep Learning-Based Channel Prediction for LEO Satellite Massive MIMO Communication System
    Zhang, Yunyang
    Wu, Yulun
    Liu, Aijun
    Xia, Xiaochen
    Pan, Ting
    Liu, Xian
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (08) : 1835 - 1839
  • [3] Robust Design for NOMA-Based Multibeam LEO Satellite Internet of Things
    Chu, Jianhang
    Chen, Xiaoming
    Zhong, Caijun
    Zhang, Zhaoyang
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (03) : 1959 - 1970
  • [4] Joint precoding optimization of multibeam satellite system based on partial channel information
    Song, Gao-Jun
    Cao, Shou-Guo
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2015, 43 (11): : 2232 - 2236
  • [5] Deep Reinforcement Learning-Based Resource Allocation for Satellite Internet of Things with Diverse QoS Guarantee
    Tang, Siqi
    Pan, Zhisong
    Hu, Guyu
    Wu, Yang
    Li, Yunbo
    SENSORS, 2022, 22 (08)
  • [6] A Deep Reinforcement Learning-Based Caching Strategy for Internet of Things
    Nasehzadeh, Ali
    Wang, Ping
    2020 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2020, : 969 - 974
  • [7] A Deep Learning-Based DDoS Detection Framework for Internet of Things
    Ma, Li
    Chai, Ying
    Cui, Lei
    Ma, Dongchao
    Fu, Yingxun
    Xiao, Ailing
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [8] Deep reinforcement learning-based beam Hopping algorithm in multibeam satellite systems
    Hu, Xin
    Liu, Shuaijun
    Wang, Yipeng
    Xu, Lexi
    Zhang, Yuchen
    Wang, Cheng
    Wang, Weidong
    IET COMMUNICATIONS, 2019, 13 (16) : 2485 - 2491
  • [9] Dynamic Channel Allocation for Satellite Internet of Things via Deep Reinforcement Learning
    Liu, Jiahao
    Zhao, Baokang
    Xin, Qin
    Liu, Hua
    2020 34TH INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2020), 2020, : 465 - 470
  • [10] Deep Learning (DL)-Based Channel Prediction and Hybrid Beamforming for LEO Satellite Massive MIMO System
    Zhang, Yunyang
    Liu, Aijun
    Li, Pinghui
    Jiang, Siqi
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (23): : 23705 - 23715