SafeSmartDrive: Real-Time Traffic Environment Detection and Driver Behavior Monitoring With Machine and Deep Learning

被引:0
|
作者
Bouhsissin, Soukaina [1 ]
Sael, Nawal [1 ]
Benabbou, Faouzia [1 ]
Soultana, Abdelfettah [1 ]
Jannani, Ayoub [1 ]
机构
[1] Hassan II Univ Casablanca, Fac Sci Ben MSick, Lab Informat Technol & Modeling, Casablanca 20000, Morocco
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Deep learning; YOLO; Pedestrians; Animals; Scalability; Road safety; Real-time systems; Risk management; Monitoring; Accidents; driver behavior; real-time monitoring; environment detection; vehicle detection; traffic signs; deep learning; sustainability; ESG goals; STOP/RUN BEHAVIOR; YELLOW INDICATION; CLASSIFICATION; NETWORK; ONSET;
D O I
10.1109/ACCESS.2024.3498596
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The advancement of intelligent transportation systems is crucial for improving road safety and optimizing traffic flow. In this paper, we present SafeSmartDrive, an integrated transportation monitoring system designed to detect and assess critical elements in the driving environment while simultaneously monitoring driver behavior. The system is structured into four key layers: perception, filtering and preparation, detection and classification, and alert. SafeSmartDrive focuses on two primary objectives: (1) detecting and assessing essential traffic elements, including vehicles (buses, cars, motorcycles, trucks, bicycles), traffic signs and lights, pedestrians, animals, infrastructure damage, accident classification, and traffic risk assessment, and (2) evaluating driver behavior across various road types, such as highways, secondary roads, and intersections. Machine learning and deep learning algorithms are employed throughout the system's components. For traffic element detection, we utilize YOLOv9 in this paper, which outperforms previous versions like YOLOv7 and YOLOv8, achieving a precision of 83.1%. Finally, we present the evaluation of the SafeSmartDrive system's real-time detection capabilities in a specific scenario in Casablanca. SafeSmartDrive's comprehensive architecture offers a novel approach to improving road safety through the integration of advanced detection, classification, and risk assessment capabilities.
引用
收藏
页码:169499 / 169517
页数:19
相关论文
共 50 条
  • [41] Real-time data visual monitoring of triboelectric nanogenerators enabled by Deep learning
    Zhang, Huiya
    Liu, Tao
    Zou, Xuelian
    Zhu, Yunpeng
    Chi, Mingchao
    Wu, Di
    Jiang, Keyang
    Zhu, Sijia
    Zhai, Wenxia
    Wang, Shuangfei
    Nie, Shuangxi
    Wang, Zhiwei
    NANO ENERGY, 2024, 130
  • [42] A Deep Learning Framework for Robust and Real-Time Taillight Detection Under Various Road Conditions
    Jeon, Hyung-Joon
    Vinh Dinh Nguyen
    Tin Trung Duong
    Jeon, Jae Wook
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (11) : 20061 - 20072
  • [43] Deep Learning Approach for Real-time Video Streaming Traffic Classification
    Al Jameel, Mohammed
    Turner, Scott
    Kanakis, Triantafyllos
    Al-Sherbaz, Ali
    Bhaya, Wesam S.
    PROCEEDING OF THE 2ND 2022 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (CSASE 2022), 2022, : 168 - 174
  • [44] Real-Time Defect Detection Model in Industrial Environment Based on Lightweight Deep Learning Network
    Lu, Jiaqi
    Lee, Soo-Hong
    ELECTRONICS, 2023, 12 (21)
  • [45] Real-time driver identification in IoV: A deep learning and cloud integration approach
    Gheni, Hassan Muwafaq
    Abdulrahaim, Laith A.
    Abdellatif, Abdallah
    HELIYON, 2024, 10 (07)
  • [46] Machine learning for real-time remote detection
    Labbe, Benjamin
    Fournier, Jerome
    Henaff, Gilles
    Bascle, Benedicte
    Canu, Stephane
    OPTICS AND PHOTONICS FOR COUNTERTERRORISM AND CRIME FIGHTING VI AND OPTICAL MATERIALS IN DEFENCE SYSTEMS TECHNOLOGY VII, 2010, 7838
  • [47] DESIGN OF REAL-TIME SYSTEM BASED ON MACHINE LEARNING FOR SNORING AND OSA DETECTION
    Luo, Huaiwen
    Zhang, Lu
    Zhou, Lianyu
    Lin, Xu
    Zhang, Zehuai
    Wang, Mingjiang
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1156 - 1160
  • [48] Real-Time Stroke Detection Using Deep Learning and Federated Learning
    Elhanashi, Abdussalam
    Dini, Pierpaolo
    Saponara, Sergio
    Zheng, Qinghe
    Alsharif, Ibrahim
    REAL-TIME PROCESSING OF IMAGE, DEPTH, AND VIDEO INFORMATION 2024, 2024, 13000
  • [49] LightSeizureNet: A Lightweight Deep Learning Model for Real-Time Epileptic Seizure Detection
    Qiu, Siyuan
    Wang, Wenjin
    Jiao, Hailong
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (04) : 1845 - 1856
  • [50] A Hybrid Approach of a Deep Learning Technique for Real-Time ECG Beat Detection
    Patro, Kiran Kumar
    Prakash, Allam Jaya
    Samantray, Saunak
    Plawiak, Joanna
    Tadeusiewicz, Ryszard
    Plawiak, Pawel
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2022, 32 (03) : 455 - 465