SafeSmartDrive: Real-Time Traffic Environment Detection and Driver Behavior Monitoring With Machine and Deep Learning

被引:0
|
作者
Bouhsissin, Soukaina [1 ]
Sael, Nawal [1 ]
Benabbou, Faouzia [1 ]
Soultana, Abdelfettah [1 ]
Jannani, Ayoub [1 ]
机构
[1] Hassan II Univ Casablanca, Fac Sci Ben MSick, Lab Informat Technol & Modeling, Casablanca 20000, Morocco
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Deep learning; YOLO; Pedestrians; Animals; Scalability; Road safety; Real-time systems; Risk management; Monitoring; Accidents; driver behavior; real-time monitoring; environment detection; vehicle detection; traffic signs; deep learning; sustainability; ESG goals; STOP/RUN BEHAVIOR; YELLOW INDICATION; CLASSIFICATION; NETWORK; ONSET;
D O I
10.1109/ACCESS.2024.3498596
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The advancement of intelligent transportation systems is crucial for improving road safety and optimizing traffic flow. In this paper, we present SafeSmartDrive, an integrated transportation monitoring system designed to detect and assess critical elements in the driving environment while simultaneously monitoring driver behavior. The system is structured into four key layers: perception, filtering and preparation, detection and classification, and alert. SafeSmartDrive focuses on two primary objectives: (1) detecting and assessing essential traffic elements, including vehicles (buses, cars, motorcycles, trucks, bicycles), traffic signs and lights, pedestrians, animals, infrastructure damage, accident classification, and traffic risk assessment, and (2) evaluating driver behavior across various road types, such as highways, secondary roads, and intersections. Machine learning and deep learning algorithms are employed throughout the system's components. For traffic element detection, we utilize YOLOv9 in this paper, which outperforms previous versions like YOLOv7 and YOLOv8, achieving a precision of 83.1%. Finally, we present the evaluation of the SafeSmartDrive system's real-time detection capabilities in a specific scenario in Casablanca. SafeSmartDrive's comprehensive architecture offers a novel approach to improving road safety through the integration of advanced detection, classification, and risk assessment capabilities.
引用
收藏
页码:169499 / 169517
页数:19
相关论文
共 50 条
  • [1] Real-time Driver Drowsiness Detection using Deep Learning
    Dipu, Md Tanvir Ahammed
    Hossain, Syeda Sumbul
    Arafat, Yeasir
    Rafiq, Fatama Binta
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (07) : 844 - 850
  • [2] Real-time Driver Drowsiness Detection using Deep Learning
    Dipu M.T.A.
    Hossain S.S.
    Arafat Y.
    Rafiq F.B.
    Dipu, Md. Tanvir Ahammed, 1600, Science and Information Organization (12): : 844 - 850
  • [3] Deep Learning-Based Real-Time Driver Cognitive Distraction Detection
    Fresta, Matteo
    Bellotti, Francesco
    Bochenko, Igor
    Lazzaroni, Luca
    Merlhiot, Gaetan
    Tango, Fabio
    Berta, Riccardo
    IEEE ACCESS, 2025, 13 : 26589 - 26607
  • [4] Sleep Deprivation Detection for Real-Time Driver Monitoring Using Deep Learning
    Garcia-Garcia, Miguel
    Caplier, Alice
    Rombaut, Michele
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2018), 2018, 10882 : 435 - 442
  • [5] Real-time Driver Monitoring using Facial Landmarks and Deep Learning
    Joshi, Soham
    Venugopalan, Shankaran
    Kumar, Animesh
    Kukade, Shweta
    Lodha, Mokshit
    Motade, Sumitra
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [6] Real-Time Traffic Classification through Deep Learning
    Priymak, Maxim
    Sinnott, Richard O.
    8TH IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES, BDCAT 2021, 2021, : 128 - 133
  • [7] Smart Traffic Monitoring Through Real-Time Moving Vehicle Detection Using Deep Learning via Aerial Images for Consumer Application
    Singh, Avaneesh
    Rahma, Mohammad Zia Ur
    Rani, Preeti
    Agrawal, Navin Kumar
    Sharma, Rohit
    Kariri, Elham
    Aray, Daniel Gavilanes
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (04) : 7302 - 7309
  • [8] Real-time traffic, accident, and potholes detection by deep learning techniques: a modern approach for traffic management
    Sarthak Babbar
    Jatin Bedi
    Neural Computing and Applications, 2023, 35 : 19465 - 19479
  • [9] Real-time traffic, accident, and potholes detection by deep learning techniques: a modern approach for traffic management
    Babbar, Sarthak
    Bedi, Jatin
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (26) : 19465 - 19479
  • [10] Real-time sow behavior detection based on deep learning
    Zhang, Yuanqin
    Cai, Jiahao
    Xiao, Deqin
    Li, Zesen
    Xiong, Benhai
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 163