The Influence of Membrane Thickness and Catalyst Loading on Performance of Proton Exchange Membrane Fuel Cells

被引:0
|
作者
Choi, Yejung [1 ]
Platzek, Paul [1 ]
Coole, Jake [2 ]
Buche, Silvain [2 ]
Fortin, Patrick [1 ]
机构
[1] SINTEF Ind, Dept Sustainable Energy Technol, N-7034 Trondheim, Norway
[2] Johnson Matthey, Lydiard Fields,Great Western Way, Swindon SN5 8AT, England
关键词
proton exchange membrane fuel cell; membrane electrode assembly; electrochemical impedance spectroscopy; membrane thickness; catalyst loading; IMPEDANCE RESPONSE; HYDROGEN CROSSOVER; IONIC-CONDUCTIVITY; ALLOY CATALYSTS; BACKPRESSURE; RESISTANCE; CATHODES; IMPACT;
D O I
10.1149/1945-7111/ad8267
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This paper explores the influence of membrane thickness and catalyst loading on fuel cell performance of commercially relevant membrane electrode assemblies (MEAs). A systematic study was carried out with MEAs comprised of commercially available Pt/C electrocatalysts and reinforced PFSA membranes to better understand the practical limitations of incorporating low platinum loadings and ultra-thin membranes in commercially viable MEA designs. Three different MEA configurations were compared where membrane thickness was either 15 or 10 mu m and cathode catalyst loading was either 0.4 or 0.1 mgPt cm-2. Extensive in situ electrochemical characterization was carried out to extract the relevant physical and electrochemical parameters of each MEA configuration. By changing only one variable at a time, i.e., either thickness or catalyst loading, it was possible to deconvolute the specific contributions of membrane thickness and catalyst loading on fuel cell performance. Interestingly, as membrane thickness was reduced below 15 mu m, no significant changes in fuel cell performance were observed as membrane interfacial effects begin to dominate compared to bulk transport effects. Conversely, reducing catalyst layer loading from 0.4 to 0.1 mgPt cm-2 introduces significant polarization losses attributed to a combination of kinetic and mass transport effects.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Towards ultralow platinum loading proton exchange membrane fuel cells
    Fan, Linhao
    Deng, Hao
    Zhang, Yingguang
    Du, Qing
    Leung, Dennis Y. C.
    Wang, Yun
    Jiao, Kui
    ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (04) : 1466 - 1479
  • [22] Proton exchange membrane fuel cells
    Vishnyakov, V. M.
    VACUUM, 2006, 80 (10) : 1053 - 1065
  • [23] Loading Impact of a PGM-Free Catalyst on the Mass Activity in Proton Exchange Membrane Fuel Cells
    Damjanovic, Ana Marija
    Koyutuek, Burak
    Li, Yan-Sheng
    Menga, Davide
    Eickes, Christian
    El-Sayed, Hany A.
    Gasteiger, Hubert A.
    Fellinger, Tim-Patrick
    Piana, Michele
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (11)
  • [24] Development of large aperture projection scatterometry for catalyst loading evaluation in proton exchange membrane fuel cells
    Stocker, Michael T.
    Barnes, Bryan M.
    Sohn, Martin
    Stanfield, Eric
    Silver, Richard M.
    JOURNAL OF POWER SOURCES, 2017, 364 : 130 - 137
  • [25] Gradational Structured Catalyst Layer for Proton Exchange Membrane Fuel Cells
    Okuno, Sota
    Katayama, Noboru
    FUEL CELL SEMINAR & ENERGY EXPOSITION 2017, 2018, 83 (01): : 87 - 91
  • [26] Cathode catalyst layer design for proton exchange membrane fuel cells
    Therdthianwong, Apichai
    Saenwiset, Pornrumpa
    Therdthianwong, Supaporn
    FUEL, 2012, 91 (01) : 192 - 199
  • [27] Improved Cathode Catalyst Layers for Proton Exchange Membrane Fuel Cells
    Jayasayee, K.
    Zlotorowicz, A.
    Clos, D. P.
    Dahl, O.
    Thomassen, M. S.
    Dahl, P. I.
    Kjelstrup, S.
    POLYMER ELECTROLYTE FUEL CELLS 14, 2014, 64 (03): : 321 - 339
  • [28] Graphite nanofibers as catalyst support for proton exchange membrane fuel cells
    Xu Hongfeng
    Lu Lu
    Zhu Shaomin
    CHINESE JOURNAL OF CATALYSIS, 2008, 29 (06) : 542 - 546
  • [29] Recent advances in catalyst materials for proton exchange membrane fuel cells
    Molmen, L.
    Eiler, K.
    Fast, L.
    Leisner, P.
    Pellicer, E.
    APL MATERIALS, 2021, 9 (04)
  • [30] Mesoscale Physics in the Catalyst Layer of Proton Exchange Membrane Fuel Cells
    Grunewald, Jonathan B.
    Mistry, Aashutosh N.
    Verma, Ankit
    Goswami, Navneet
    Mukherjee, Partha P.
    Fuller, Thomas. F.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (07) : F3089 - F3092