共 20 条
- [1] Huber N., Kalidindi S.R., Klusemann B., Cyron C.J., Editorial: Machine Learning and Data Mining in Materials Science, Frontiers in Materials, 7, (2020)
- [2] Boulle N., Earls C.J., Townsend A., Data-Driven Discovery of Green’s Func-Tions with Human-Understandable Deep Learning, (2021)
- [3] Greydanus S., Dzamba M., Yosinski J., Hamiltonian Neural Networks
- [4] de Silva B.M., Higdon D.M., Brunton S.L., Kutz J.N., Discovery of Physics From Data: Universal Laws and Discrepancies, Frontiers in Artificial Intelligence, 3, (2020)
- [5] Lange-Hegermann M., Linearly Constrained Gaussian Processes with Boundary Conditions, AISTATS, (2021)
- [6] Lange-Hegermann M., Algorithmic Linearly Constrained Gaussian Processes, Neurips, 2018
- [7] Desai S., Strachan A., Parsimonious neural networks learn interpretable physical laws, Sci Rep, 11, 1, (2021)
- [8] Choi M., Flam-Shepherd D., Kyaw T.H., Aspuru-Guzik A., Learning Quan-Tum Dynamics with Latent Neural Odes
- [9] Schmidt J., Marques M.R.G., Botti S., Marques M.A.L., Recent advances and applications of machine learning in solid-state materials science, Npj Com-Putational Materials, 5, 1, (2019)
- [10] Kim K., Ward L., He J., Krishna A., Agrawal A., Wolverton C., Machine-learning-accelerated high-throughput materials screening: Discovery of novel quaternary Heusler compounds, Physical Review Materials, 2, 12, (2018)