Limits of Noisy Quantum Metrology with Restricted Quantum Controls

被引:0
|
作者
Zhou, Sisi [1 ,2 ,3 ,4 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[2] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[3] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[4] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
关键词
SPIN; SENSITIVITY; DISTANCE; STATES;
D O I
10.1103/PhysRevLett.133.170801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Heisenberg limit [(HL), with estimation error scales as 1/n] and the standard quantum limit (SQL, proportional to 1/ffiffi p n ) are two fundamental limits in estimating an unknown parameter in n copies of quantum channels and are achievable with full quantum controls, e.g., quantum error correction (QEC). It is unknown though, whether these limits are still achievable in restricted quantum devices when QEC is unavailable, e.g., with only unitary controls or bounded system sizes. In this Letter, we discover various new limits for estimating qubit channels under restrictive controls. The HL is shown to be unachievable in various cases, indicating the necessity of QEC in achieving the HL. Furthermore, a necessary and sufficient condition to achieve the SQL is determined, where a single-qubit unitary control protocol is identified to achieve the SQL for certain types of noisy channels, and for other cases a constant floor on the estimation error is proven. A practical example of the unitary protocol is provided.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Thermodynamic Principle for Quantum Metrology
    Chu, Yaoming
    Cai, Jianming
    PHYSICAL REVIEW LETTERS, 2022, 128 (20)
  • [32] Quantum Metrology Assisted by Abstention
    Gendra, B.
    Ronco-Bonvehi, E.
    Calsamiglia, J.
    Munoz-Tapia, R.
    Bagan, E.
    PHYSICAL REVIEW LETTERS, 2013, 110 (10)
  • [33] Quantum Error Correction for Metrology
    Kessler, E. M.
    Lovchinsky, I.
    Sushkov, A. O.
    Lukin, M. D.
    PHYSICAL REVIEW LETTERS, 2014, 112 (15)
  • [34] Flexible resources for quantum metrology
    Friis, Nicolai
    Orsucci, Davide
    Skotiniotis, Michalis
    Sekatski, Pavel
    Dunjko, Vedran
    Briegel, Hans J.
    Duer, Wolfgang
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [35] Quantum advantage in postselected metrology
    Arvidsson-Shukur, David R. M.
    Halpern, Nicole Yunger
    Lepage, Hugo, V
    Lasek, Aleksander A.
    Barnes, Crispin H. W.
    Lloyd, Seth
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [36] Quantum correlations for anonymous metrology
    Paige, A. J.
    Yadin, Benjamin
    Kim, M. S.
    QUANTUM, 2019, 3
  • [37] Loschmidt echo for quantum metrology
    Macri, Tommaso
    Smerzi, Augusto
    Pezze, Luca
    PHYSICAL REVIEW A, 2016, 94 (01)
  • [38] Multiparameter Gaussian quantum metrology
    Nichols, Rosanna
    Liuzzo-Scorpo, Pietro
    Knott, Paul A.
    Adesso, Gerardo
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [39] Quantum metrology using quantum combs and tensor network formalism
    Kurdzialek, Stanislaw
    Dulian, Piotr
    Majsak, Joanna
    Chakraborty, Sagnik
    Demkowicz-Dobrzanski, Rafal
    NEW JOURNAL OF PHYSICS, 2025, 27 (01):
  • [40] Quantum metrology in coarsened measurement reference
    Xie, Dong
    Xu, Chunling
    Wang, An Min
    PHYSICAL REVIEW A, 2017, 95 (01)