Limits of Noisy Quantum Metrology with Restricted Quantum Controls

被引:0
|
作者
Zhou, Sisi [1 ,2 ,3 ,4 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[2] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[3] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[4] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
关键词
SPIN; SENSITIVITY; DISTANCE; STATES;
D O I
10.1103/PhysRevLett.133.170801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Heisenberg limit [(HL), with estimation error scales as 1/n] and the standard quantum limit (SQL, proportional to 1/ffiffi p n ) are two fundamental limits in estimating an unknown parameter in n copies of quantum channels and are achievable with full quantum controls, e.g., quantum error correction (QEC). It is unknown though, whether these limits are still achievable in restricted quantum devices when QEC is unavailable, e.g., with only unitary controls or bounded system sizes. In this Letter, we discover various new limits for estimating qubit channels under restrictive controls. The HL is shown to be unachievable in various cases, indicating the necessity of QEC in achieving the HL. Furthermore, a necessary and sufficient condition to achieve the SQL is determined, where a single-qubit unitary control protocol is identified to achieve the SQL for certain types of noisy channels, and for other cases a constant floor on the estimation error is proven. A practical example of the unitary protocol is provided.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Noisy Quantum Metrology Enhanced by Continuous Nondemolition Measurement
    Rossi, Matteo A. C.
    Albarelli, Francesco
    Tamascelli, Dario
    Genoni, Marco G.
    PHYSICAL REVIEW LETTERS, 2020, 125 (20)
  • [22] Practical limits of error correction for quantum metrology
    Shettell, Nathan
    Munro, William J.
    Markham, Damian
    Nemoto, Kae
    NEW JOURNAL OF PHYSICS, 2021, 23 (04):
  • [23] Intrinsic Sensitivity Limits for Multiparameter Quantum Metrology
    Goldberg, Aaron Z.
    Sanchez-Soto, Luis L.
    Ferretti, Hugo
    PHYSICAL REVIEW LETTERS, 2021, 127 (11)
  • [24] Dynamical decoupling leads to improved scaling in noisy quantum metrology
    Sekatski, Pavel
    Skotiniotis, Michalis
    Duer, Wolfgang
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [25] Noisy metrology: a saturable lower bound on quantum Fisher information
    Yousefjani, R.
    Salimi, S.
    Khorashad, A. S.
    QUANTUM INFORMATION PROCESSING, 2017, 16 (06)
  • [26] Noisy metrology: a saturable lower bound on quantum Fisher information
    R. Yousefjani
    S. Salimi
    A. S. Khorashad
    Quantum Information Processing, 2017, 16
  • [27] Restoring Heisenberg scaling in noisy quantum metrology by monitoring the environment
    Albarelli, Francesco
    Rossi, Matteo A. C.
    Tamascelli, Dario
    Genoni, Marco G.
    QUANTUM, 2018, 2
  • [28] Achieving the Heisenberg limit with Dicke states in noisy quantum metrology
    Saleem, Zain H.
    Perlin, Michael
    Shaji, Anil
    Gray, Stephen K.
    PHYSICAL REVIEW A, 2024, 109 (05)
  • [29] Time-Energy Uncertainty Relation for Noisy Quantum Metrology
    Faist, Philippe
    Woods, Mischa P.
    Albert, Victor V.
    Renes, Joseph M.
    Eisert, Jens
    Preskill, John
    PRX QUANTUM, 2023, 4 (04):
  • [30] Metrology-assisted entanglement distribution in noisy quantum networks
    Morelli, Simon
    Sauerwein, David
    Skotiniotis, Michalis
    Friis, Nicolai
    QUANTUM, 2022, 6