DragD3D: Realistic Mesh Editing with Rigidity Control Driven by 2D Diffusion Priors

被引:0
|
作者
Xie, Tianhao [1 ]
Belilovsky, Eugene [2 ]
Mudur, Sudhir [1 ]
Popa, Tiberiu [1 ]
机构
[1] Concordia University, Montreal, Canada
[2] Concordia University, MILA, Montreal, Canada
来源
arXiv | 2023年
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Deep learning - Mathematical transformations - Shape optimization
引用
收藏
相关论文
共 4 条
  • [1] As-Plausible-As-Possible: Plausibility-Aware Mesh Deformation Using 2D Diffusion Priors
    KAIST, Korea, Republic of
    不详
    arXiv, 1600,
  • [2] Score Jacobian Chaining: Lifting Pretrained 2D Diffusion Models for 3D Generation
    TTI-Chicago, United States
    不详
    Proc IEEE Comput Soc Conf Comput Vision Pattern Recognit, 1600, (12619-12629):
  • [3] Debiasing Scores and Prompts of 2D Diffusion for View-consistent Text-to-3D Generation
    Hong, Susung
    Ahn, Donghoon
    Kim, Seungryong
    Advances in Neural Information Processing Systems, 2023, 36
  • [4] Re-imagine the Negative Prompt Algorithm: Transform 2D Diffusion into 3D, alleviate Janus problem and Beyond
    Armandpour, Mohammadreza
    Zheng, Huangjie
    Sadeghian, Ali
    Sadeghian, Amir
    Zhou, Mingyuan
    arXiv, 2023,