Modeling the Brillouin Spectrum in Raman Amplifier-Assisted Brillouin OTDR

被引:0
|
作者
Vandborg, Mads [1 ]
Mathew, Neethu [1 ]
Christensen, Jesper [2 ]
Joy, Tomin [3 ]
Allousch, M. Ali [3 ]
Marx, Benjamin [3 ]
Gruner-Nielsen, Lars [1 ,4 ]
Rishoj, Lars [1 ]
Rottwitt, Karsten [1 ]
机构
[1] Tech Univ Denmark, Dept Elect & Photon Engn, DK-2800 Lyngby, Denmark
[2] Danish Fundamental Metrol, DK-2970 Horsholm, Denmark
[3] Luna Innovat Germany GmbH, D-51063 Cologne, Germany
[4] Danish Opt Fiber Innovat, DK-2700 Bronshoj, Denmark
关键词
Brillouin; distributed fiber sensor; OTDR; Raman amplification; NOISE;
D O I
10.1109/JLT.2024.3412407
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A tool for increasing the range of Brillouin optical time domain reflectometry (BOTDR) is distributed in-line Raman amplification. In this article, we model and experimentally verify how a combination of Raman pump depletion, pump-probe walk-off and self- and cross-phase modulation lead to a shift of the Brillouin spectrum, ultimately inducing an error in the sensor reading. The induced error is up to approximately 7 MHz (approx. 7 degrees C) for standard BOTDR parameters. We numerically model the propagation of the fields in the fiber using standard propagation equations, and by considering only spontaneous Brillouin scattering as the source of the back-scattered field, we find an expression of the Brillouin spectrum. By using standard parameters of a BOTDR setup, we show how there is a tradeoff between Raman amplifier gain and the spectrally induced error. By comparing the model to experiments, we find that the measurements show the same trend as the simulated spectra.
引用
收藏
页码:6286 / 6292
页数:7
相关论文
共 50 条
  • [1] EXPERIMENTAL AND MODELING STUDIES OF A BRILLOUIN AMPLIFIER
    OFFENBERGER, AA
    THOMPSON, DC
    FEDOSEJEVS, R
    HARWOOD, B
    SANTIAGO, J
    MANJUNATH, HR
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1993, 29 (01) : 207 - 216
  • [2] Improvement of Performance for Raman Assisted BOTDR by Analyzing Brillouin Gain Spectrum
    Huang, Qiang
    Sun, Junqiang
    Jiao, Wenting
    Kai, Li
    SENSORS, 2022, 22 (01)
  • [3] Characterization of a Brillouin amplifier and a Brillouin laser optically injected
    Debut, A
    Randoux, S
    Zemmouri, J
    JOURNAL DE PHYSIQUE IV, 2000, 10 (P8): : 173 - 174
  • [4] Brillouin Stokes comb generated in a distributed fiber Raman amplifier
    Martins, Hugo F.
    Marques, Manuel B.
    Frazao, Orlando
    INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS, 2011, 8001
  • [5] BRILLOUIN - RAMAN SPECTRUM OF FERROELECTRIC BATIO3
    LAZAY, PD
    FLEURY, PA
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (11): : 1381 - &
  • [6] Pulse shape control using a main Brillouin amplifier and a reshaping Brillouin amplifier
    Yang, J.
    Lue, Z. W.
    He, W. M.
    Zhang, W.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2008, 10 (08): : 2100 - 2104
  • [7] Modeling of Brillouin spectrum of a quantum dot crystal
    Lazarenkova, OL
    Balandin, AA
    NANOTECH 2003, VOL 3, 2003, : 526 - 529
  • [8] Multi-wavelength Brillouin fiber laser using Brillouin-Rayleigh scatterings in distributed Raman amplifier
    Shahi, S.
    Harun, S. W.
    Ahmad, H.
    LASER PHYSICS LETTERS, 2009, 6 (10) : 737 - 739
  • [9] Repeaterless Brillouin OTDR Sensing over 250 km using Erbium doped Fiber Amplifier
    Mathew, Neethu Mariam
    Vandborg, Mads Holmark
    Christensen, Jesper Bjerge
    Wang, Zepeng
    Gruner-Nielsen, Lars
    Rishoj, Lars Sogaard
    Marx, Benjamin
    Allousch, M. Ali
    Geisler, Tommy
    Lassen, Mikael
    Rottwitt, Karsten
    2024 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION, OFC, 2024,
  • [10] Monitoring of temperature in distributed optical sensor: Raman and Brillouin spectrum
    Amira, Zrelli
    Mohamed, Bouyahi
    Tahar, Ezzedine
    OPTIK, 2016, 127 (08): : 4162 - 4166