Piston Sensing for Sparse Aperture Systems via All-Optical Diffractive Neural Network

被引:0
|
作者
Ma, Xiafei [1 ,2 ,3 ]
Xie, Zongliang [1 ,2 ,3 ]
Ma, Haotong [1 ,2 ,3 ]
Ren, Ge [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Natl Key Lab Opt Field Manipulat Sci & Technol, Chengdu 610209, Peoples R China
[2] Chinese Acad Sci, Key Lab Opt Engn, Chengdu 610209, Peoples R China
[3] Chinese Acad Sci, Inst Opt & Elect, Chengdu 610209, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2024年 / 16卷 / 05期
基金
中国国家自然科学基金;
关键词
Pistons; Optical sensors; Optical imaging; Optical diffraction; Adaptive optics; Apertures; Testing; Piston sensing; diffractive neural network; sparse aperture system; DISPERSED FRINGE SENSOR; TELESCOPES; IMAGE;
D O I
10.1109/JPHOT.2023.3319629
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
It is a crucial issue to realize real-time piston correction in the area of sparse aperture imaging. This paper demonstrates that an optical diffractive neural network is capable of achieving light-speed piston sensing. By using detectable intensity distributions to represent pistons, the proposed method can convert the imaging optical field into estimated pistons without imaging acquisition and electrical processing, thus realizing the piston sensing task all-optically. The simulations verify the feasibility of the approach for fine phasing, with testing accuracy of lambda/40 attained. This method can greatly improve the real-time performance of piston sensing and contribute to the development of sparse aperture system.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [31] 2bit Nonlinear Diffractive Deep Neural Network (2bit ND 2 NN): A quantized nonlinear all-optical diffractive deep neural network implementation
    Sun, Yichen
    Dong, Mingli
    Yu, Mingxin
    Zhu, Lianqing
    OPTICS AND LASER TECHNOLOGY, 2024, 177
  • [32] All-Optical Physical Field Recognition Via Sparse Feature Extraction
    Qi, Haotong
    Hu, Jianyang
    Li, Chang
    Zhang, Xuyao
    Chen, Chen
    Cao, Danlin
    Lin, Jie
    Wang, Yiqun
    Jin, Peng
    LASER & PHOTONICS REVIEWS, 2024, 18 (11)
  • [33] Diffractive interconnects: all-optical permutation operation using diffractive networks
    Mengu, Deniz
    Zhao, Yifan
    Tabassum, Anika
    Jarrahi, Mona
    Ozcan, Aydogan
    NANOPHOTONICS, 2023, 12 (05) : 905 - 923
  • [34] Optical ReLU using membrane lasers for an all-optical neural network
    Takahashi, Naoki
    Fang, Weicheng
    Xue, Ruihao
    Okada, Sho
    Ohiso, Yoshitaka
    Amemiya, Tomohiro
    Nishiyama, Nobuhiko
    OPTICS LETTERS, 2022, 47 (21) : 5715 - 5718
  • [35] Tunable Photoinduced Liquid Crystal Retarders for All-Optical Diffractive Deep Neural Networks
    Long, Quanzhou
    Yao, Lisheng
    Shao, Junjie
    Yeung, Fion Sze Yan
    Zhou, Lingxiao
    Zhang, Wanlong
    Yuan, Xiaocong
    ACS PHOTONICS, 2024, 11 (11): : 4778 - 4785
  • [36] Polarization-based all-optical logic gates using diffractive neural networks
    Lin, Xiaohong
    Zhang, Kou
    Liao, Kun
    Huang, Haiqi
    Fu, Yulan
    Zhang, Xinping
    Feng, Shuai
    Hu, Xiaoyong
    JOURNAL OF OPTICS, 2024, 26 (03)
  • [37] All-Optical Recurrent Neural Network With Reconfigurable Activation Function
    Dehghanpour, Aida Ebrahimi
    Koohi, Somayyeh
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2023, 29 (02)
  • [38] All-optical recurrent neural network with sigmoid activation function
    Mourgias-Alexandris, George
    Dabos, George
    Passalis, Nikolaos
    Tefas, Anastasios
    Totovic, Angelina
    Pleros, Nikos
    2020 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC), 2020,
  • [39] All-optical Sudoku solver with photonic spiking neural network
    Gao, Shuang
    Xiang, Shuiying
    Song, Ziwei
    Han, Yanan
    Hao, Yue
    OPTICS COMMUNICATIONS, 2021, 495
  • [40] All-optical mass sensing with coupled mechanical resonator systems
    Li, Jin-Jin
    Zhu, Ka-Di
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2013, 525 (03): : 223 - 254