Piston Sensing for Sparse Aperture Systems via All-Optical Diffractive Neural Network

被引:0
|
作者
Ma, Xiafei [1 ,2 ,3 ]
Xie, Zongliang [1 ,2 ,3 ]
Ma, Haotong [1 ,2 ,3 ]
Ren, Ge [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Natl Key Lab Opt Field Manipulat Sci & Technol, Chengdu 610209, Peoples R China
[2] Chinese Acad Sci, Key Lab Opt Engn, Chengdu 610209, Peoples R China
[3] Chinese Acad Sci, Inst Opt & Elect, Chengdu 610209, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2024年 / 16卷 / 05期
基金
中国国家自然科学基金;
关键词
Pistons; Optical sensors; Optical imaging; Optical diffraction; Adaptive optics; Apertures; Testing; Piston sensing; diffractive neural network; sparse aperture system; DISPERSED FRINGE SENSOR; TELESCOPES; IMAGE;
D O I
10.1109/JPHOT.2023.3319629
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
It is a crucial issue to realize real-time piston correction in the area of sparse aperture imaging. This paper demonstrates that an optical diffractive neural network is capable of achieving light-speed piston sensing. By using detectable intensity distributions to represent pistons, the proposed method can convert the imaging optical field into estimated pistons without imaging acquisition and electrical processing, thus realizing the piston sensing task all-optically. The simulations verify the feasibility of the approach for fine phasing, with testing accuracy of lambda/40 attained. This method can greatly improve the real-time performance of piston sensing and contribute to the development of sparse aperture system.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [1] Piston sensing for sparse aperture systems with broadband extended objects via a single convolutional neural network
    Ma, Xiafei
    Xie, Zongliang
    Ma, Haotong
    Xu, Yangjie
    He, Dong
    Ren, Ge
    OPTICS AND LASERS IN ENGINEERING, 2020, 128
  • [2] Modeling and simulation of all-optical diffractive neural network based on nonlinear optical materials
    Sun, Yichen
    Dong, Mingli
    Yu, Mingxin
    Lu, Lidan
    Liang, Shengjun
    Xia, Jiabin
    Zhu, Lianqing
    OPTICS LETTERS, 2022, 47 (01) : 126 - 129
  • [3] Piston sensing of sparse aperture systems with a single broadband image via deep learning
    Ma, Xiafei
    Xie, Zongliang
    Ma, Haotong
    Xu, Yangjie
    Ren, Ge
    Liu, Yang
    OPTICS EXPRESS, 2019, 27 (11) : 16058 - 16070
  • [4] All-optical diffractive neural networked terahertz hologram
    Liao, Dashuang
    Chan, Ka Fai
    Chan, Chi Hou
    Zhang, Qingle
    Wang, Haogang
    OPTICS LETTERS, 2020, 45 (10) : 2906 - 2909
  • [5] An improved all-optical diffractive deep neural network with less parameters for gesture recognition
    Zhou, Yuanguo
    Shui, Shan
    Cai, Yijun
    Chen, Chengying
    Chen, Yingshi
    Abdi-Ghaleh, Reza
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 90
  • [6] Pulmonary Nodule Detection and Classification Using All-Optical Deep Diffractive Neural Network
    Shao, Junjie
    Zhou, Lingxiao
    Yeung, Sze Yan Fion
    Lei, Ting
    Zhang, Wanlong
    Yuan, Xiaocong
    LIFE-BASEL, 2023, 13 (05):
  • [7] Space-Time Projection Enabled Ultrafast All-Optical Diffractive Neural Network
    Zhang, Ziyang
    Feng, Fu
    Gan, Jiaan
    Lin, Wei
    Chen, Guangyong
    Somekh, Michael G.
    Yuan, Xiaocong
    LASER & PHOTONICS REVIEWS, 2024, 18 (08)
  • [8] Optical Diffractive Convolutional Neural Networks Implemented in an All-Optical Way
    Yu, Yaze
    Cao, Yang
    Wang, Gong
    Pang, Yajun
    Lang, Liying
    SENSORS, 2023, 23 (12)
  • [9] All-optical recurrent neural network
    Berger, C
    Collings, N
    OPTICS IN COMPUTING 98, 1998, 3490 : 465 - 469
  • [10] Robust light beam diffractive shaping based on a kind of compact all-optical neural network
    Shi, Jiashuo
    Wei, Dong
    Hu, Chai
    Chen, Mingce
    Liu, Kewei
    Luo, Jun
    Zhang, Xinyu
    OPTICS EXPRESS, 2021, 29 (05) : 7084 - 7099