A-priori and a-posteriori error estimates for discontinuous Galerkin method of the Maxwell eigenvalue problem

被引:1
作者
Zhang, Jun [1 ]
Luo, Zijiang [2 ]
Han, Jiayu [3 ]
Chen, Hu [4 ]
机构
[1] Guizhou Univ Finance & Econ, Computat Math Res Ctr, Guiyang 550025, Guizhou, Peoples R China
[2] Shunde Polytech, Inst Intelligent Mfg, Shunde 528300, Guangdong, Peoples R China
[3] Guizhou Normal Univ, Sch Math Sci, Guiyang 550025, Peoples R China
[4] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
关键词
Maxwell eigenvalue problem; Discontinuous Garlerkin method; Error analysis; Upper bound; FINITE-ELEMENT APPROXIMATIONS; LOWER BOUNDS; EQUATIONS; DOMAINS;
D O I
10.1016/j.camwa.2024.10.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to a-priori and a-posteriori error analysis of discontinuous Galerkin (DG) method for the Maxwell eigenvalue problem. The discrete compactness of DG space is proved so that the Babu & scaron;ka and Osborn spectral approximation theory can be applicable in the a-priori error analysis. Then we prove the optimal error estimates for DG eigenfunctions in mesh-dependent norm and DG eigenvalues. A special contribution of this work is to prove that the error in L 2- norm for smooth eigenfunctions is of higher order than that in mesh-dependent norm, so that the DG eigenvalues can approximate the true eigenvalues from upper. Another contribution of this work is to provide a-posteriori error analysis for the DG method. A reliable a-posteriori error estimator is analyzed. The upper bound property of DG eigenvalues and the robustness of adaptive methods are verified through numerical experiments.
引用
收藏
页码:190 / 201
页数:12
相关论文
共 48 条
[1]  
Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
[2]  
2-B
[3]  
[Anonymous], 1991, Handbook of Numerical Analysis
[4]  
Armentano MG, 2004, ELECTRON T NUMER ANA, V17, P93
[5]   Residual based a posteriori error estimators for eddy current computation [J].
Beck, R ;
Hiptmair, R ;
Hoppe, RHW ;
Wohlmuth, B .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (01) :159-182
[6]   Computational models of electromagnetic resonators: Analysis of edge element approximation [J].
Boffi, D ;
Fernandes, P ;
Gastaldi, L ;
Perugia, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (04) :1264-1290
[7]   A Posteriori Error Estimates for Maxwell's Eigenvalue Problem [J].
Boffi, Daniele ;
Gastaldi, Lucia ;
Rodriguez, Rodolfo ;
Sebestova, Ivana .
JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (02) :1250-1271
[8]  
Brezzi F., 1991, MIXED HYBRID FINITE
[9]   Discontinuous Galerkin computation of the Maxwell eigenvalues on simplicial meshes [J].
Buffa, Annalisa ;
Houston, Paul ;
Perugia, Ilaria .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 204 (02) :317-333
[10]   Discontinuous Galerkin approximation of the Maxwell eigenproblem [J].
Buffa, Annalisa ;
Perugia, Ilaria .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (05) :2198-2226