Digital Quantum Simulation of a (1+1)D SU(2) Lattice Gauge Theory with Ion Qudits

被引:3
|
作者
Calajo, Giuseppe [1 ]
Magnifico, Giuseppe [2 ,3 ,4 ]
Edmunds, Claire [5 ]
Ringbauer, Martin [1 ,2 ,6 ]
Montangero, Simone [1 ,2 ,6 ]
Silvi, Pietro [1 ,2 ,6 ]
机构
[1] Ist Nazl Fis Nucl INFN, Sez Padova, I-35131 Padua, Italy
[2] Dipartimento Fis & Astron G Galilei, via Marzolo 8, I-35131 Padua, Italy
[3] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy
[4] Ist Nazl Fis Nucl INFN, Sez Bari, I-70125 Bari, Italy
[5] Univ Innsbruck, Inst Experimentalphys, Technikerstr 25a, Innsbruck, Austria
[6] Univ Padua, Padua Quantum Technol Res Ctr, I-35131 Padua, Italy
来源
PRX QUANTUM | 2024年 / 5卷 / 04期
基金
奥地利科学基金会;
关键词
REAL-TIME DYNAMICS; CONFINEMENT;
D O I
10.1103/PRXQuantum.5.040309
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a quantum simulation strategy for a (1+1)-dimensional SU(2) non-Abelian lattice gauge theory with dynamical matter, a hardcore-gluon Hamiltonian Yang-Mills, tailored to a six-level trappedion-qudit quantum processor, as recently experimentally realized [Nat. Phys. 18, 1053 (2022)]. We employ a qudit encoding fulfilling gauge invariance, an SU(2) Gauss's law. We discuss the experimental feasibility of generalized M & oslash;lmer-S & oslash;rensen gates used to efficiently simulate the dynamics. We illustrate how a shallow circuit with these resources is sufficient to implement scalable digital quantum simulation of the model. We also numerically show that this model, albeit simple, can dynamically manifest physically relevant properties specific to non-Abelian field theories, such as baryon excitations.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Z2 monopoles in D=2+1 SU(2) lattice gauge theory
    Hart, A
    Lucini, B
    Teper, M
    Schram, Z
    JOURNAL OF HIGH ENERGY PHYSICS, 2000, (11):
  • [2] Variational study of U(1) and SU(2) lattice gauge theories with Gaussian states in 1+1 dimensions
    Sala, P.
    Shi, T.
    Kuhn, S.
    Banuls, M. C.
    Demler, E.
    Cirac, J. I.
    PHYSICAL REVIEW D, 2018, 98 (03)
  • [3] Thermal monopoles in the SU(2) gauge theory on a lattice
    Bornyakov, V. G.
    Kononenko, A. G.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2014, 69 (04) : 287 - 292
  • [4] Quantum simulation of gauge theory via orbifold lattice
    Buser, Alexander J.
    Gharibyan, Hrant
    Hanada, Masanori
    Honda, Masazumi
    Liu, Junyu
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (09)
  • [5] MONOPOLES IN THE PLAQUETTE FORMULATION OF THE 3D SU(2) LATTICE GAUGE THEORY
    Borisenko, O.
    Voloshyn, S.
    Bohacik, J.
    MODERN PHYSICS LETTERS A, 2011, 26 (25) : 1853 - 1867
  • [6] Circuit-based digital adiabatic quantum simulation and pseudoquantum simulation as new approaches to lattice gauge theory
    Xiaopeng Cui
    Yu Shi
    Ji-Chong Yang
    Journal of High Energy Physics, 2020
  • [7] Circuit-based digital adiabatic quantum simulation and pseudoquantum simulation as new approaches to lattice gauge theory
    Cui, Xiaopeng
    Shi, Yu
    Yang, Ji-Chong
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (08)
  • [8] Revisiting the flux tube spectrum of 3d SU(2) lattice gauge theory
    Brandt, Bastian B.
    INDIAN JOURNAL OF PHYSICS, 2021, 95 (08) : 1613 - 1622
  • [9] Revisiting the flux tube spectrum of 3d SU(2) lattice gauge theory
    Bastian B. Brandt
    Indian Journal of Physics, 2021, 95 : 1613 - 1622
  • [10] Cold-Atom Quantum Simulator for SU(2) Yang-Mills Lattice Gauge Theory
    Zohar, Erez
    Cirac, J. Ignacio
    Reznik, Benni
    PHYSICAL REVIEW LETTERS, 2013, 110 (12)