GPT4Kinase: High-accuracy prediction of inhibitor-kinase binding affinity utilizing large language model

被引:4
作者
Liu, Kaifeng [1 ]
Yu, Xiangyu [1 ]
Cui, Huizi [1 ]
Li, Wannan [1 ]
Han, Weiwei [1 ]
机构
[1] Jilin Univ, Sch Life Sci, Key Lab Mol Enzymol & Engn, Edmond H Signal Transduct Lab,Minist Educ, Qianjin Rd 2699, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
GPT-4; Kinase; Binding affinity; PROTEIN; PHOSPHORYLATION; INFORMATION; DOCKING; CANCER;
D O I
10.1016/j.ijbiomac.2024.137069
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The accurate prediction of inhibitor-kinase binding affinity is crucial in biological research and medical applications. Particularly, kinases play a pivotal role in numerous cellular processes and are essential enzymes in Mitogen-Activated Protein Kinase (MAPK) signaling pathway. This present study harnesses the capabilities of Large Language Models (LLMs), specifically GPT-4, to predict the binding affinity between inhibitors and kinases within the MAPK pathway, including Raf protein kinase (RAF), Mitogen-activated protein kinase kinase (MEK) and Extracellular Signal-Regulated Kinase (ERK). Remarkably, GPT-4 achieved an impressive 87.31 % accuracy in prediction on RAF binding affinity, and 77.00 % accuracy in comprehensive prediction tasks, substantially outperforming existing mainstream methods such as Autodock Vina (21.21 %), BatchDTA (52.00 %) and KIPP (59.60 %). Furthermore, GPT-4 was employed to delineate the features of high-affinity and low-affinity molecules, as well as their contributing functional groups. These contributing groups were subsequently validated through molecular docking. Additionally, to validate the generalizability of the method, we applied it to six other kinases and achieved a maximum accuracy of 83.78 %. Also, we utilized a dataset comprising over 200 kinases, obtaining a high accuracy of 66.20 %. The study showcases the transformative impact of LLMs on molecular binding affinity prediction, with major implications for biological sciences and therapeutic development.
引用
收藏
页数:15
相关论文
共 43 条
[1]   Principal component analysis [J].
Abdi, Herve ;
Williams, Lynne J. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04) :433-459
[2]   Trends in kinase drug discovery: targets, indications and inhibitor design [J].
Attwood, Misty M. ;
Fabbro, Doriano ;
Sokolov, Aleksandr V. ;
Knapp, Stefan ;
Schioth, Helgi B. .
NATURE REVIEWS DRUG DISCOVERY, 2021, 20 (11) :839-861
[3]   Accurate prediction of protein structures and interactions using a three-track neural network [J].
Baek, Minkyung ;
DiMaio, Frank ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Ovchinnikov, Sergey ;
Lee, Gyu Rie ;
Wang, Jue ;
Cong, Qian ;
Kinch, Lisa N. ;
Schaeffer, R. Dustin ;
Millan, Claudia ;
Park, Hahnbeom ;
Adams, Carson ;
Glassman, Caleb R. ;
DeGiovanni, Andy ;
Pereira, Jose H. ;
Rodrigues, Andria V. ;
van Dijk, Alberdina A. ;
Ebrecht, Ana C. ;
Opperman, Diederik J. ;
Sagmeister, Theo ;
Buhlheller, Christoph ;
Pavkov-Keller, Tea ;
Rathinaswamy, Manoj K. ;
Dalwadi, Udit ;
Yip, Calvin K. ;
Burke, John E. ;
Garcia, K. Christopher ;
Grishin, Nick V. ;
Adams, Paul D. ;
Read, Randy J. ;
Baker, David .
SCIENCE, 2021, 373 (6557) :871-+
[4]   Role of Chat GPT in Public Health [J].
Biswas, Som S. .
ANNALS OF BIOMEDICAL ENGINEERING, 2023, 51 (05) :868-869
[5]   A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer [J].
Braicu, Cornelia ;
Buse, Mihail ;
Busuioc, Constantin ;
Drula, Rares ;
Gulei, Diana ;
Raduly, Lajos ;
Rusu, Alexandru ;
Irimie, Alexandru ;
Atanasov, Atanas G. ;
Slaby, Ondrej ;
Ionescu, Calin ;
Berindan-Neagoe, Ioana .
CANCERS, 2019, 11 (10)
[6]   The origins of protein phosphorylation [J].
Cohen, P .
NATURE CELL BIOLOGY, 2002, 4 (05) :E127-E130
[7]   THE ROLE OF PROTEIN-PHOSPHORYLATION IN NEURAL AND HORMONAL-CONTROL OF CELLULAR-ACTIVITY [J].
COHEN, P .
NATURE, 1982, 296 (5858) :613-620
[8]  
Dong QX, 2024, Arxiv, DOI arXiv:2301.00234
[9]   Prediction of protein kinase-specific phosphorylation sites in hierarchical structure using functional information and random forest [J].
Fan, Wenwen ;
Xu, Xiaoyi ;
Shen, Yi ;
Feng, Huanqing ;
Li, Ao ;
Wang, Minghui .
AMINO ACIDS, 2014, 46 (04) :1069-1078
[10]   Cellular regulation by protein phosphorylation [J].
Fischer, Edmond H. .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2013, 430 (02) :865-867