Soil Salinity Mapping of Plowed Agriculture Lands Combining Radar Sentinel-1 and Optical Sentinel-2 with Topographic Data in Machine Learning Models

被引:1
|
作者
Tola, Diego [1 ,2 ,3 ]
Satge, Frederic [3 ,4 ]
Pillco Zola, Ramiro [4 ]
Sainz, Humberto [2 ]
Condori, Bruno [2 ]
Miranda, Roberto [5 ]
Yujra, Elizabeth [5 ]
Molina-Carpio, Jorge [4 ]
Hostache, Renaud [3 ]
Espinoza-Villar, Raul [1 ]
机构
[1] Univ Nacl Agr La Molina, Programa Doctorado Recursos Hidricos PDRH, Lima 15024, Peru
[2] Univ Publ El Alto, Area Ciencias Agr Pecuarias & Recursos Nat ACAPRN, La Paz 10077, Bolivia
[3] Univ Montpellier, Univ Antilles, Univ Guyane, Univ Reunion,IRD,ESPACE DEV, F-34093 Montpellier, France
[4] Univ Mayor San Andres, Inst Hidraul Hidrol IHH, La Paz 10077, Bolivia
[5] Univ Mayor San Andres, Fac Agron, La Paz 10077, Bolivia
关键词
soil salinity mapping; plowed lands; machine learning; Sentinel-1; Sentinel-2; PERFORMANCE; ACCURACY; INDEXES; IMAGES;
D O I
10.3390/rs16183456
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study assesses the relative performance of Sentinel-1 and -2 and their combination with topographic information for plow agricultural land soil salinity mapping. A learning database made of 255 soil samples' electrical conductivity (EC) along with corresponding radar (R), optical (O), and topographic (T) information derived from Sentinel-2 (S2), Sentinel-1 (S1), and the SRTM digital elevation model, respectively, was used to train four machine learning models (Decision tree-DT, Random Forest-RF, Gradient Boosting-GB, Extreme Gradient Boosting-XGB). Each model was separately trained/validated for four scenarios based on four combinations of R, O, and T (R, O, R+O, R+O+T), with and without feature selection. The Recursive Feature Elimination with k-fold cross validation (RFEcv 10-fold) and the Variance Inflation Factor (VIF) were used for the feature selection process to minimize multicollinearity by selecting the most relevant features. The most reliable salinity estimates are obtained for the R+O+T scenario, considering the feature selection process, with R2 of 0.73, 0.74, 0.75, and 0.76 for DT, GB, RF, and XGB, respectively. Conversely, models based on R information led to unreliable soil salinity estimates due to the saturation of the C-band signal in plowed lands.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Canonical Analysis of Sentinel-1 Radar and Sentinel-2 Optical Data
    Nielsen, Allan A.
    Larsen, Rasmus
    IMAGE ANALYSIS, SCIA 2017, PT II, 2017, 10270 : 147 - 158
  • [2] Digital mapping of soil salinization based on Sentinel-1 and Sentinel-2 data combined with machine learning algorithms
    Ma, Guolin
    Ding, Jianli
    Han, Lijng
    Zhang, Zipeng
    Ran, Si
    REGIONAL SUSTAINABILITY, 2021, 2 (02) : 177 - 188
  • [3] Digital mapping of soil salinization based on Sentinel-1 and Sentinel-2 data combined with machine learning algorithms
    MA Guolin
    DING Jianli
    HAN Lijing
    ZHANG Zipeng
    RAN Si
    RegionalSustainability, 2021, 2 (02) : 177 - 188
  • [4] Soil Texture Estimation Using Radar and Optical Data from Sentinel-1 and Sentinel-2
    Bousbih, Safa
    Zribi, Mehrez
    Pelletier, Charlotte
    Gorrab, Azza
    Lili-Chabaane, Zohra
    Baghdadi, Nicolas
    Ben Aissa, Nadhira
    Mougenot, Bernard
    REMOTE SENSING, 2019, 11 (13)
  • [5] Integrating the Sentinel-1, Sentinel-2 and topographic data into soybean yield modelling using machine learning
    Amankulova, Khilola
    Farmonov, Nizom
    Omonov, Khasan
    Abdurakhimova, Mokhigul
    Mucsi, Laszlo
    ADVANCES IN SPACE RESEARCH, 2024, 73 (08) : 4052 - 4066
  • [6] Complementarity of Sentinel-1 and Sentinel-2 Data for Soil Salinity Monitoring to Support Sustainable Agriculture Practices in the Central Bolivian Altiplano
    Sirpa-Poma, J. W.
    Satge, F.
    Zola, R. Pillco
    Resongles, E.
    Perez-Flores, M.
    Colque, M. G. Flores
    Molina-Carpio, J.
    Ramos, O.
    Bonnet, M. -P.
    SUSTAINABILITY, 2024, 16 (14)
  • [7] Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at Plot Scale
    Attarzadeh, Reza
    Amini, Jalal
    Notarnicola, Claudia
    Greifeneder, Felix
    REMOTE SENSING, 2018, 10 (08)
  • [8] SENTINEL-1 & SENTINEL-2 DATA FOR SOIL TILLAGE CHANGE DETECTION
    Satalino, G.
    Mattia, F.
    Balenzano, A.
    Lovergine, F. P.
    Rinaldi, M.
    De Santis, A. P.
    Ruggieri, S.
    Nafria Garcia, D. A.
    Paredes Gomez, V.
    Ceschia, E.
    Planells, M.
    Le Toan, T.
    Ruiz, A.
    Moreno, J. F.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6627 - 6630
  • [9] Digital Soil Texture Mapping and Spatial Transferability of Machine Learning Models Using Sentinel-1, Sentinel-2, and Terrain-Derived Covariates
    Mirzaeitalarposhti, Reza
    Shafizadeh-Moghadam, Hossein
    Taghizadeh-Mehrjardi, Ruhollah
    Demyan, Michael Scott
    REMOTE SENSING, 2022, 14 (23)
  • [10] COUPLING SENTINEL-1 AND SENTINEL-2 IMAGES FOR OPERATIONAL SOIL MOISTURE MAPPING
    El Hajj, Mohammad
    Baghdadi, Nicolas
    Zribi, Mehrez
    Bazzi, Hassan
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5537 - 5540