Synthetic Nanoassemblies for Regulating Organelles: From Molecular Design to Precision Therapeutics

被引:8
作者
Guo, Yanfei [1 ]
Li, Peiran [2 ]
Guo, Xiaocui [2 ]
Yao, Chi [2 ]
Yang, Dayong [1 ,2 ]
机构
[1] Fudan Univ, Coll Chem & Mat, Shanghai Key Lab Mol Catalysis & Innovat Mat, Dept Chem,State Key Lab Mol Engn Polymers, Shanghai 200438, Peoples R China
[2] Tianjin Univ, Frontiers Sci Ctr Synthet Biol, Sch Chem Engn & Technol, Key Lab Syst Bioengn MOE, Tianjin 300350, Peoples R China
基金
中国国家自然科学基金;
关键词
intracellular assembly; synthetic nanoassembly; DNA nanotechnology; polymer; peptide; dynamic assembly; organelle-targeting; organelleregulation; precision therapeutics; RADICAL POLYMERIZATION; DNA; MITOCHONDRIA; NANOFIBERS; CHALLENGES; DYNAMICS; PROTEIN; NANOSTRUCTURES; ORGANIZATION; MORPHOLOGY;
D O I
10.1021/acsnano.4c10194
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Each organelle referring to a complex multiorder architecture executes respective biological processes via its distinct spatial organization and internal microenvironment. As the assembly of biomolecules is the structural basis of living cells, creating synthetic nanoassemblies with specific physicochemical and morphological properties in living cells to interfere or couple with the natural organelle architectures has attracted great attention in precision therapeutics of cancers. In this review, we give an overview of the latest advances in the synthetic nanoassemblies for precise organelle regulation, including the formation mechanisms, triggering strategies, and biomedical applications in precision therapeutics. We summarize the emerging material systems, including polymers, peptides, and deoxyribonucleic acids (DNAs), and their respective intermolecular interactions for intercellular synthetic nanoassemblies, and highlight their design principles in constructing precursors that assemble into synthetic nanoassemblies targeting specific organelles in the complex cellular environment. We further showcase the developed intracellular synthetic nanoassemblies targeting specific organelles including mitochondria, the endoplasmic reticulum, lysosome, Golgi apparatus, and nucleus and describe their underlying mechanisms for organelle regulation and precision therapeutics for cancer. Last, the essential challenges in this field and prospects for future precision therapeutics of synthetic nanoassemblies are discussed. This review should facilitate the rational design of organelle-targeting synthetic nanoassemblies and the comprehensive recognition of organelles by materials and contribute to the deep understanding and application of the synthetic nanoassemblies for precision therapeutics.
引用
收藏
页码:30224 / 30246
页数:23
相关论文
共 204 条
[1]   Light-mediated intracellular polymerization [J].
Abdelrahim, Mohamed ;
Gao, Quan ;
Zhang, Yichuan ;
Li, Weishuo ;
Xing, Qi ;
Bradley, Mark ;
Geng, Jin .
NATURE PROTOCOLS, 2024, 19 (07) :1984-2025
[2]   A tumour-selective cascade activatable self-detained system for drug delivery and cancer imaging [J].
An, Hong-Wei ;
Li, Li-Li ;
Wang, Yi ;
Wang, Ziqi ;
Hou, Dayong ;
Lin, Yao-Xin ;
Qiao, Sheng-Lin ;
Wang, Man-Di ;
Yang, Chao ;
Cong, Yong ;
Ma, Yang ;
Zhao, Xiao-Xiao ;
Cai, Qian ;
Chen, Wen-Ting ;
Lu, Chu-Qi ;
Xu, Wanhai ;
Wang, Hao ;
Zhao, Yuliang .
NATURE COMMUNICATIONS, 2019, 10 (1)
[3]   GOLGI RETENTION OF A TRANS-GOLGI MEMBRANE-PROTEIN, GALACTOSYL-TRANSFERASE, REQUIRES CYSTEINE AND HISTIDINE-RESIDUES WITHIN THE MEMBRANE-ANCHORING DOMAIN [J].
AOKI, D ;
LEE, N ;
YAMAGUCHI, N ;
DUBOIS, C ;
FUKUDA, MN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (10) :4319-4323
[4]   Transformable amyloid-beta mimetic peptide amphiphiles for lysosomal disruption in non-small cell lung cancer [J].
Baehr, Christopher M. ;
Zhang, Lu ;
Wu, Yi ;
Domokos, Andras ;
Xiao, Wenwu ;
Wang, Lei ;
Lam, Kit S. .
BIOMATERIALS, 2021, 277
[5]   An LKB1-mitochondria axis controls TH17 effector function [J].
Baixauli, Francesc ;
Piletic, Klara ;
Puleston, Daniel J. ;
Villa, Matteo ;
Field, Cameron S. ;
Flachsmann, Lea J. ;
Quintana, Andrea ;
Rana, Nisha ;
Edwards-Hicks, Joy ;
Matsushita, Mai ;
Stanczak, Michal A. ;
Grzes, Katarzyna M. ;
Kabat, Agnieszka M. ;
Fabri, Mario ;
Caputa, George ;
Kelly, Beth ;
Corrado, Mauro ;
Musa, Yaarub ;
Duda, Katarzyna J. ;
Mittler, Gerhard ;
O'Sullivan, David ;
Sesaki, Hiromi ;
Jenuwein, Thomas ;
Buescher, Joerg M. ;
Pearce, Edward J. ;
Sanin, David E. ;
Pearce, Erika L. .
NATURE, 2022, 610 (7932) :555-+
[6]   H+ transport is an integral function of the mitochondrial ADP/ATP carrier [J].
Bertholet, Ambre M. ;
Chouchani, Edward T. ;
Kazak, Lawrence ;
Angelin, Alessia ;
Fedorenko, Andriy ;
Long, Jonathan Z. ;
Vidoni, Sara ;
Garrity, Ryan ;
Cho, Joonseok ;
Terada, Naohiro ;
Wallace, Douglas C. ;
Spiegelman, Bruce M. ;
Kirichok, Yuriy .
NATURE, 2019, 571 (7766) :515-+
[7]   Lysosomes as a therapeutic target [J].
Bonam, Srinivasa Reddy ;
Wang, Fengjuan ;
Muller, Sylviane .
NATURE REVIEWS DRUG DISCOVERY, 2019, 18 (12) :923-948
[8]   The power and potential of mitochondria transfer [J].
Borcherding, Nicholas ;
Brestoff, Jonathan R. .
NATURE, 2023, 623 (7986) :283-291
[9]   Clinical relevance of transmembrane drug efflux as a mechanism of multidrug resistance [J].
Bradshaw, DM ;
Arceci, RJ .
JOURNAL OF CLINICAL ONCOLOGY, 1998, 16 (11) :3674-3690
[10]   Organization of the ER-Golgi interface for membrane traffic control [J].
Brandizzi, Federica ;
Barlowe, Charles .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2013, 14 (06) :382-392