Construction of Cu-Modified g-C3N4 Nanosheets for Photoinduced CO2 Reduction to CO and Selectivity Mechanism Insight

被引:5
作者
Qi, Qi [1 ]
Shen, Wenjing [1 ]
Cai, Ming [2 ]
Cai, Junxi [1 ]
Hu, Bo [3 ]
Han, Donglai [4 ]
Tang, Xu [1 ]
Zhu, Zhi [1 ,5 ]
Huo, Pengwei [1 ]
机构
[1] Jiangsu Univ, Sch Chem & Chem Engn, Inst Adv Mat, Zhenjiang 212013, Peoples R China
[2] Jilin Normal Univ, Coll Phys, Siping 130023, Peoples R China
[3] Baicheng Normal Univ, Coll Chem, Baicheng 137000, Peoples R China
[4] Changchun Univ Sci & Technol, Sch Mat Sci & Engn, Changchun 130022, Peoples R China
[5] Hong Kong Baptist Univ, Dept Biol, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Cu modification; *COOH intermediate; photocatalyticreduction of CO2; product selectivity; active site; GRAPHITIC CARBON NITRIDE; HETEROJUNCTION; SEMICONDUCTOR; PHOTOCATALYST; SEPARATION; ABILITY; ATOM;
D O I
10.1021/acsanm.4c04669
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Graphite polymeric carbon nitride (PCN) has been extensively applied to photocatalytic CO2 reduction reactions, which are expected to enhance the reaction activity and improve product selectivity by introducing transition metals. In this work, we successfully prepared Cu-modified PCN (Cu-PCN) by a thermal polymerization approach and conducted a systematic and comprehensive exploration of the photocatalytic reduction of CO2 and selective generation of CO reactions. A series of experiments and DFT results attest that a tiny amount of Cu anchor on PCN, forming an active site for activating CO2, can significantly mediate the electron transport to absorbed CO2 molecul0065s through the Cu sites and improve the efficiency of the light-driven CO2 reduction reaction. As-designed photocatalysts exhibit excellent photocatalytic reduction of CO2 to a CO selectivity close to 100%. Detection of intermediates using in situ FT-IR reveals that *COOH is the critical intermediate and is a rate-limiting step in the overall reaction, which is consistent with DFT results. Our work makes up for these deficiencies in previous related research and provides a good reference for exploring the product selectivity of photocatalytic reduction of CO2.
引用
收藏
页码:24788 / 24797
页数:10
相关论文
共 50 条
  • [41] Activated g-C3N4 Photocatalyst with Defect Engineering for Efficient Reduction of CO2 in Water
    Tong, Zhenwei
    Hai, Yuyan
    Wang, Baodeng
    Lv, Fei
    Zhong, Zhencheng
    Xiong, Rihua
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (23) : 11067 - 11075
  • [42] g-C3N4/dendritic fibrous nanosilica doped with potassium for photocatalytic CO2 reduction
    Rawool, Sushma A.
    Kar, Yusuf
    Polshettiwar, Vivek
    MATERIALS ADVANCES, 2022, 3 (23): : 8449 - 8459
  • [43] BiOCl/g-C3N4 heterojunction catalyst for efficient photocatalytic reduction of CO2 under visible light
    He Z.
    Chen J.
    Tong L.
    Tang J.
    Chen J.
    Song S.
    Song, Shuang (ss@zjut.edu.cn), 1600, Materials China (67): : 4634 - 4642
  • [44] Prominent COF, g-C3N4, and Their Heterojunction Materials for Selective Photocatalytic CO2 Reduction
    Bika, Panagiota
    Papailias, Ilias
    Giannakopoulou, Tatiana
    Tampaxis, Christos
    Steriotis, Theodore A.
    Trapalis, Christos
    Dallas, Panagiotis
    CATALYSTS, 2023, 13 (10)
  • [45] Tailoring the properties of g-C3N4 with CuO for enhanced photoelectrocatalytic CO2 reduction to methanol
    Jiang, Xiao Xia
    Hu, Xiu De
    Tarek, Mostafa
    Saravanan, Prabhu
    Alqadhi, Radfan
    Chin, Sim Yee
    Khan, Md Maksudur Rahman
    JOURNAL OF CO2 UTILIZATION, 2020, 40 (40)
  • [46] Self-assembled g-C3N4 nanotubes/graphdiyne composite with enhanced photocatalytic CO2 reduction
    Sun, Cong
    Liu, Yuanyuan
    Wang, Zeyan
    Wang, Peng
    Zheng, Zhaoke
    Cheng, Hefeng
    Qin, Xiaoyan
    Zhang, Xiaoyang
    Dai, Ying
    Huang, Baibiao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 868
  • [47] Study on optical properties of alkali metal doped g-C3N4 and their photocatalytic activity for reduction of CO2
    Zhang, Hao
    Tang, Yunqing
    Liu, Zhixiang
    Zhu, Zhi
    Tang, Xu
    Wang, Yemei
    CHEMICAL PHYSICS LETTERS, 2020, 751
  • [48] Incorporation of Cesium Lead Halide Perovskites into g-C3N4 for Photocatalytic CO2 Reduction
    Cheng, Ruolin
    Jin, Handong
    Roeffaers, Maarten B. J.
    Hofkens, Johan
    Debroye, Elke
    ACS OMEGA, 2020, 5 (38): : 24495 - 24503
  • [49] Photocatalytic H2 Evolution, CO2 Reduction, and NOx Oxidation by Highly Exfoliated g-C3N4
    Todorova, Nadia
    Papailias, Ilias
    Giannakopoulou, Tatiana
    Ioannidis, Nikolaos
    Boukos, Nikos
    Dallas, Panagiotis
    Edelmannova, Miroslava
    Reli, Martin
    Koci, Kamila
    Trapalis, Christos
    CATALYSTS, 2020, 10 (10) : 1 - 27
  • [50] Facet effect of Pd cocatalyst on photocatalytic CO2 reduction over g-C3N4
    Cao, Shaowen
    Li, Yao
    Zhu, Bicheng
    Jaroniec, Mietek
    Yu, Jiaguo
    JOURNAL OF CATALYSIS, 2017, 349 : 208 - 217