Multi-Step Passenger Flow Prediction for Urban Metro System Based on Spatial-Temporal Graph Neural Network

被引:1
作者
Chang, Yuchen [1 ]
Zong, Mengya [1 ]
Dang, Yutian [2 ]
Wang, Kaiping [1 ]
机构
[1] Xian Univ Architecture & Technol, Dept Comp Sci, Xian 710055, Peoples R China
[2] Xian Univ Architecture & Technol, Coll Architecture, Xian 710055, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 18期
基金
国家重点研发计划;
关键词
metro system; multistep passenger flow prediction; dynamic global attention; locality-aware sparse attention; graph convolutional network; TRAFFIC FLOW;
D O I
10.3390/app14188121
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Efficient operation of urban metro systems depends on accurate passenger flow predictions, a task complicated by intricate spatiotemporal correlations. This paper introduces a novel spatiotemporal graph neural network (STGNN) designed explicitly for predicting multistep passenger flow within metro stations. In the spatial dimension, previous research primarily focuses on local spatial dependencies, struggling to capture implicit global information. We propose a spatial modeling module that leverages a dynamic global attention network (DGAN) to capture dynamic global information from all-pair interactions, intricately fusing prior knowledge from the input graph with a graph convolutional network. In the temporal dimension, we design a temporal modeling module tailored to navigate the challenges of both long-term and recent-term temporal passenger flow patterns. This module consists of series decomposition blocks and locality-aware sparse attention (LSA) blocks to incorporate multiple local contexts and reduce computational complexities in long sequence modeling. Experiments conducted on both simulated and real-world datasets validate the exceptional predictive performance of our proposed model.
引用
收藏
页数:21
相关论文
共 55 条
[1]   Stock Price Prediction Using the ARIMA Model [J].
Adebiyi, Ayodele A. ;
Adewumi, Aderemi O. ;
Ayo, Charles K. .
2014 UKSIM-AMSS 16TH INTERNATIONAL CONFERENCE ON COMPUTER MODELLING AND SIMULATION (UKSIM), 2014, :106-112
[2]  
Ahmed M.S., 1979, R Analysis of Freeway Traffic Time-Series Data by Using Box-Jenkins Techniques, V722
[3]   An Empirical Comparison of Machine Learning Models for Time Series Forecasting [J].
Ahmed, Nesreen K. ;
Atiya, Amir F. ;
El Gayar, Neamat ;
El-Shishiny, Hisham .
ECONOMETRIC REVIEWS, 2010, 29 (5-6) :594-621
[4]  
[Anonymous], 2013, ICML 3, DOI DOI 10.5555/3042817.3042999
[5]  
Ba J, 2014, ACS SYM SER
[6]  
Bai SJ, 2018, Arxiv, DOI [arXiv:1803.01271, DOI 10.48550/ARXIV.1803.01271]
[7]  
Bottou L., 2007, Large-scale kernel machines, P321
[8]   Subway Passenger Flow Prediction for Special Events Using Smart Card Data [J].
Chen, Enhui ;
Ye, Zhirui ;
Wang, Chao ;
Xu, Mingtao .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (03) :1109-1120
[9]  
Choi J, 2022, AAAI CONF ARTIF INTE, P6367
[10]  
Dai XY, 2017, Arxiv, DOI arXiv:1707.03213