Role of Point Defects and Ion Intercalation in Two-Dimensional Multilayer Transition Metal Dichalcogenide Memristors

被引:1
作者
Ganeriwala, Mohit D. [1 ]
Toral-Lopez, Alejandro [1 ,2 ]
Calaforra-Ayuso, Estela [1 ]
Pasadas, Francisco [1 ]
Ruiz, Francisco G. [1 ]
Marin, Enrique G. [1 ]
Godoy, Andres [1 ]
机构
[1] Univ Granada, Dept Elect & Comp Technol, E-18071 Granada, Spain
[2] Univ Pisa, Pisa, Italy
关键词
neuromorphic computing; synapse; memristor; 2D materials; transition metal dichalcogenides; sulfur vacancy; metal intercalation;
D O I
10.1021/acsanm.4c04769
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Two-dimensional materials, in particular transition metal dichalcogenides (TMDs), have attracted a nascent interest in the implementation of memristive architectures. In addition to being functionally similar to synapses, their nanoscale footprint promises to achieve the high density of a biological neural network in the context of neuromorphic computing. However, in order to advance from the current exploratory phase and reach reliable and sound memristive performances, an understanding of the underlying physical mechanisms in TMD memristors seems imperative. Despite the distinctive transport medium inherent to multilayer TMDs, the memristance is routinely attributed to defects or metal atoms present in the system, with their precise contribution remaining elusive. Specifically, the role of intrinsic point defects in the formation of conductive channels, although shown for monolayer TMDs, is not conclusively studied for multilayer samples. In this work, using density functional theory (DFT) and nonequilibrium Green's function (NEGF) formalism, a systematic study is carried out to analyze the impact that defects and metal atoms produce on the out-of-plane conductivity of multilayer TMDs. MoS2, a representative of the 2H structural configuration, and PtS2, a representative of the 1T structure, the most common crystal arrangements among TMDs, are used for this analysis. It is found that the intrinsic sulfur vacancies, which are the dominant defects present in both TMDs, appear to be insufficient in causing resistive switching on the application of an external bias. The claim that the intrinsic point defects on their own can realize a valence change memory-type device by providing a controllable conductive channel through the van der Waals structure seems, according to our study, improbable. The presence of metallic atoms is demonstrated to be essential to trigger the memristive mechanism, emphasizing the proper choice of a metal electrode as being critical in the fabrication and optimization of memristors using TMDs.
引用
收藏
页码:24857 / 24865
页数:9
相关论文
共 50 条
  • [1] Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets
    Brent, Jack R.
    Savjani, Nicky
    O'Brien, Paul
    PROGRESS IN MATERIALS SCIENCE, 2017, 89 : 411 - 478
  • [2] Epoxy Nanocomposites with Two-Dimensional Transition Metal Dichalcogenide Additives
    Eksik, Osman
    Gao, Jian
    Shojaee, S. Ali
    Thomas, Abhay
    Chow, Philippe
    Bartolucci, Stephen F.
    Lucca, Don A.
    Koratkar, Nikhil
    ACS NANO, 2014, 8 (05) : 5282 - 5289
  • [3] Defects and Defect Engineering of Two-Dimensional Transition Metal Dichalcogenide (2D TMDC) Materials
    Hossen, Moha Feroz
    Shendokar, Sachin
    Aravamudhan, Shyam
    NANOMATERIALS, 2024, 14 (05)
  • [4] Two-dimensional alloyed transition metal dichalcogenide nanosheets: Synthesis and applications
    Huang, Haoxin
    Zha, Jiajia
    Li, Shisheng
    Tan, Chaoliang
    CHINESE CHEMICAL LETTERS, 2022, 33 (01) : 163 - 176
  • [5] Gas sensors based on two-dimensional transition metal dichalcogenide nanoheterojunctions
    Yang, Zhi
    Li, Bolong
    Han, Yutong
    Su, Chen
    Chen, Xinwei
    Zhou, Zhihua
    Su, Yanjie
    Hu, Nantao
    Zhang, Yafei
    Zeng, Min
    CHINESE SCIENCE BULLETIN-CHINESE, 2019, 64 (35): : 3699 - 3716
  • [6] Two-dimensional transition metal dichalcogenide nanomaterials for solar water splitting
    Dinsefa M. Andoshe
    Jong-Myeong Jeon
    Soo Young Kim
    Ho Won Jang
    Electronic Materials Letters, 2015, 11 : 323 - 335
  • [7] Two-Dimensional Transition Metal Dichalcogenide Nanomaterials for Solar Water Splitting
    Andoshe, Dinsefa M.
    Jeon, Jong-Myeong
    Kim, Soo Young
    Jang, Ho Won
    ELECTRONIC MATERIALS LETTERS, 2015, 11 (03) : 323 - 335
  • [8] A novel two-dimensional transition metal dichalcogenide as water splitting photocatalyst with excellent performances
    Wang, Fang
    Cheng, Zishuang
    Zhang, Xiaoming
    Xie, Chunxiao
    Liu, Fucai
    Chang, Chuntao
    Liu, Guodong
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [9] Two-Dimensional Transition Metal Dichalcogenide Based Biosensors: From Fundamentals to Healthcare Applications
    Mia, Abdul Kaium
    Meyyappan, M.
    Giri, P. K.
    BIOSENSORS-BASEL, 2023, 13 (02):
  • [10] Band Alignment Engineering in Two-Dimensional Transition Metal Dichalcogenide-Based Heterostructures for Photodetectors
    Liu, Ran
    Wang, Fakun
    Liu, Lixin
    He, Xiaoyu
    Chen, Jiazhen
    Li, Yuan
    Zhai, Tianyou
    SMALL STRUCTURES, 2021, 2 (03):