Oxygen vacancy-rich Ni2P2O7 modified g-C3N4 heterojunction for highly-efficient CO2 photoreduction

被引:4
作者
Li, Xin [1 ,2 ]
Sun, Baoyan [1 ]
Fan, Hougang [1 ,2 ]
Liu, Xiaoyan [1 ,2 ]
Cao, Jian [1 ,2 ]
Liu, Huilian [1 ,2 ]
Yang, Lili [1 ,2 ]
Wei, Maobin [1 ,2 ]
Vomiero, Alberto [3 ,4 ]
机构
[1] Jilin Normal Univ, Key Lab Funct Mat Phys & Chem, Minist Educ, Changchun 130103, Peoples R China
[2] Jilin Normal Univ, Natl Demonstrat Ctr Expt Phys Educ, Siping 136000, Peoples R China
[3] Lulea Univ Technol, Dept Engn Sci & Math, Div Mat Sci, S-97187 Lulea, Sweden
[4] Ca Foscari Univ Venice, Dept Mol Sci & Nanosyst, Via Torino 155, I-30172 Venice, Italy
关键词
CO; 2; photoreduction; Oxygen vacancy; Ni2P2O7; g-C3N4; GRAPHITIC CARBON NITRIDE; REDUCTION; SCHEME;
D O I
10.1016/j.cej.2024.157174
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Oxygen vacancy-rich Ni2P2O7/g-C3N4 heterojunction with high photogenerated carrier supply and excellent CO2 adsorption ability was prepared for efficient CO2 photoreduction. The yields of CO and CH4 with Ni2P2O7/g-C3N4 (3-NC) as the catalyst were about 53.85 and 14.28 mu mol & sdot;g- 1 & sdot;h- 1, which were 5 and 16 times greater than that of g-C3N4 under the UV-Vis irradiation. Experiments and DFT calculations revealed the modification of g-C3N4 with Ni2P2O7 can significantly accelerate the photogenerated electrons' transfer from g-C3N4 to Ni2P2O7 through the built-in electric field. CO2-adsorption test and CO2-adsorption energy displayed Ni2P2O7 can effectively act as the CO2 capture unit to increase the reaction probability of electrons and CO2, thereby enhancing the CO2 photoreduction performance. 13CO2 isotope experiment, in-situ FTIR, in-situ XPS and Gibbs free-energy calculations were applied to explore the CO2 photoreduction process. Finally, a potential CO2 photoreduction mechanism with synergistic enhancement of oxygen vacancy and the built-in electric field was proposed.
引用
收藏
页数:12
相关论文
共 61 条
[1]   Jahn-Teller distortions in molybdenum oxides: An achievement in exploring high rate supercapacitor applications and robust photocatalytic potential [J].
Bai, Liqi ;
Zhang, Yihe ;
Zhang, Likai ;
Zhang, Yuanxing ;
Sun, Li ;
Ji, Ning ;
Li, Xiaowei ;
Si, Haochen ;
Zhang, Yu ;
Huang, Hongwei .
NANO ENERGY, 2018, 53 :982-992
[2]   Significantly enhanced photothermal catalytic CO2 reduction over TiO2/g-C3N4 composite with full spectrum solar light [J].
Bao, Xiaoyan ;
Lu, Dawei ;
Wang, Zining ;
Yin, Hao ;
Zhu, Biao ;
Chen, Bin ;
Shi, Meixiang ;
Zhang, Yang ;
Xu, Qianxin ;
Qin, Yumei ;
Shen, Xing -Can ;
Wu, Kai .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 638 :63-75
[3]   Control of energy band, layer structure and vacancy defect of graphitic carbon nitride by intercalated hydrogen bond effect of NO3- toward improving photocatalytic performance [J].
Che, Huinan ;
Liu, Lihui ;
Che, Guangbo ;
Dong, Hongjun ;
Liu, Chunbo ;
Li, Chunmei .
CHEMICAL ENGINEERING JOURNAL, 2019, 357 :209-219
[4]   Zn Dopants Synergistic Oxygen Vacancy Boosts Ultrathin CoO Layer for CO2 Photoreduction [J].
Chen, Kui ;
Jiang, Tongtong ;
Liu, Tianhu ;
Yu, Jing ;
Zhou, Sheng ;
Ali, Asad ;
Wang, Shuhui ;
Liu, Yu ;
Zhu, Lixin ;
Xu, Xiaoliang .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (15)
[5]   Towards the improvement of methane production in CO2 photoreduction using Bi2WO6/TiO2 heterostructures [J].
Collado, Laura ;
Gomez-Mendoza, Miguel ;
Garcia-Tecedor, Miguel ;
Oropeza, Freddy E. ;
Reynal, Anna ;
Durrant, James R. ;
Serrano, David P. ;
O'Shea, Victor A. de la Pena .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 324
[6]   Defect-Rich Bi12O17Cl2 Nanotubes Self-Accelerating Charge Separation for Boosting Photocatalytic CO2 Reduction [J].
Di, Jun ;
Zhu, Chao ;
Ji, Mengxia ;
Duan, Meilin ;
Long, Ran ;
Yan, Cheng ;
Gu, Kaizhi ;
Xiong, Jun ;
She, Yuanbin ;
Xia, Jiexiang ;
Li, Huaming ;
Liu, Zheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (45) :14847-14851
[7]   Embedding CsPbBr3 perovskite quantum dots into mesoporous TiO2 beads as an S-scheme heterojunction for CO2 photoreduction [J].
Dong, Zhongliang ;
Zhang, Zhijie ;
Jiang, Ying ;
Chu, Yaoqing ;
Xu, Jiayue .
CHEMICAL ENGINEERING JOURNAL, 2022, 433
[8]   Enhanced photocatalytic reduction of CO2 by fabricating In2O3/CeO2/HATP hybrid multi-junction photocatalyst [J].
Guan, Jingru ;
Wang, Huiqin ;
Li, Jinze ;
Ma, Changchang ;
Huo, Pengwei .
JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2019, 99 :93-103
[9]   Hierarchical NiCo2O4 hollow nanocages for photoreduction of diluted CO2: Adsorption and active sites engineering [J].
Han, Bin ;
Song, Jianing ;
Liang, Shujie ;
Chen, Weiyi ;
Deng, Hong ;
Ou, Xinwen ;
Xu, Yi-Jun ;
Lin, Zhang .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 260
[10]   Construction of 2D/2D Bi2Se3/g-C3N4 nanocomposite with High interfacial charge separation and photo-heat conversion efficiency for selective photocatalytic CO2 reduction [J].
Huang, Yanhong ;
Wang, Kai ;
Guo, Ting ;
Li, Jun ;
Wu, Xiaoyong ;
Zhang, Gaoke .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 277