共 76 条
[61]
Wang C X, Cai S F, Tan G., Graphtcn: Spatio-temporal interaction modeling for human trajectory prediction
[62]
Haddad S, Wu M Q, Wei H., Situation-aware pedestrian trajectory prediction with spatio-temporal attention model
[63]
Yu C J, Ma X, Ren J W, Et al., Spatio-temporal graph transformer networks for pedestrian trajectory Prediction, Proceedings of the European Conference on Computer Vision, pp. 507-523, (2020)
[64]
Liang J W, Jiang L, Murphy K, Et al., The garden of forking paths: Towards multi-future trajectory prediction, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10505-10515, (2020)
[65]
Velickovic P, Cucurull G, Casanova A, Et al., Graph attention networks, Proceedings of the International Conference on Learning Representations, pp. 566-577, (2018)
[66]
Chiho C, Bariush B., Looking to relations for future trajectory forecast, Proceedings of the IEEE International Conference on Computer Vision, pp. 921-930, (2019)
[67]
Mangalam K, Girase H, Agarwal S, Et al., It is not the journey but the destination: Endpoint conditioned trajectory prediction
[68]
Shi X D, Shao X W, Guo Z L, Et al., Pedestrian trajectory prediction in extremely crowded scenarios, Sensors, 19, 5, pp. 1-18, (2019)
[69]
Zhu Y L, Ren D C, Fan M Y, Et al., Robust trajectory forecasting for multiple intelligent agents in dynamic scene
[70]
Cheng Y, Chi R H, Huang S B, Et al., Uncertain trajectory prediction method using non-parametric density estimation, Acta Automatica Sinica, 45, 4, pp. 787-798, (2019)