A generalization of Possibilistic Fuzzy C-Means Method for Statistical Clustering of Data

被引:0
|
作者
Azzouzi S. [1 ]
El-Mekkaoui J. [2 ]
Hjouji A. [2 ]
Khalfi A.E.L. [1 ]
机构
[1] Mechanical engineering Laboratory, Faculty of Sciences and techniques, Sidi Mohamed Ben, Abdellah University, FEZ
[2] TI Laboratory, Superior School of Technology, Sidi Mohamed Ben Abdellah University, Fez
关键词
Fuzzy C-means (FCM); Fuzzy clustering; Possibilistic Fuzzy C-Means (PFCM); ·Possibilistic C-Means (PCM); Fuzzy Possibilistic C-Means (FPCM);
D O I
10.46300/9106.2021.15.191
中图分类号
学科分类号
摘要
The Fuzzy C-means (FCM) algorithm has been widely used in the field of clustering and classification but has encountered difficulties with noisy data and outliers. Other versions of algorithms related to possibilistic theory have given good results, such as Fuzzy C-Means(FCM), possibilistic C-means (PCM), Fuzzy possibilistic C-means (FPCM) and possibilistic fuzzy C-Means algorithm (PFCM).This last algorithm works effectively in some environments but encountered more shortcomings with noisy databases. To solve this problem, we propose in this manuscript, a new algorithm named Improved Possibilistic Fuzzy C-Means (ImPFCM) by combining the PFCM algorithm with a very powerful statistical method. The properties of this new ImPFCM algorithm show that it is not only applicable on clusters of spherical shapes, but also on clusters of different sizes and densities. The results of the comparative study with very recent algorithms indicate the performance and the superiority of the proposed approach to easily group the datasets in a large-dimensional space and to use not only the Euclidean distance but more sophisticated standards norms, capable to deal with much more complicated problems. On the other hand, we have demonstrated that the ImPFCM algorithm is also capable of detecting the cluster center with high accuracy and performing satisfactorily in multiple environments with noisy data and outliers. © 2021, North Atlantic University Union NAUN. All rights reserved.
引用
收藏
页码:1766 / 1780
页数:14
相关论文
共 50 条
  • [1] A possibilistic fuzzy c-means clustering algorithm
    Pal, NR
    Pal, K
    Keller, JM
    Bezdek, JC
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (04) : 517 - 530
  • [2] Novel possibilistic fuzzy c-means clustering
    School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
    不详
    Tien Tzu Hsueh Pao, 2008, 10 (1996-2000):
  • [3] On tolerant fuzzy c-means clustering and tolerant possibilistic clustering
    Hamasuna, Yukihiro
    Endo, Yasunori
    Miyamoto, Sadaaki
    SOFT COMPUTING, 2010, 14 (05) : 487 - 494
  • [4] On tolerant fuzzy c-means clustering and tolerant possibilistic clustering
    Yukihiro Hamasuna
    Yasunori Endo
    Sadaaki Miyamoto
    Soft Computing, 2010, 14 : 487 - 494
  • [5] Possibilistic C-Means Clustering Using Fuzzy Relations
    Zarandi, M. H. Fazel
    Kalhori, M. Rostam Niakan
    Jahromi, M. F.
    PROCEEDINGS OF THE 2013 JOINT IFSA WORLD CONGRESS AND NAFIPS ANNUAL MEETING (IFSA/NAFIPS), 2013, : 1137 - 1142
  • [6] A Modified Possibilistic Fuzzy c-Means Clustering Algorithm
    Qu, Fuheng
    Hu, Yating
    Xue, Yaohong
    Yang, Yong
    2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 858 - 862
  • [7] A Possibilistic Multivariate Fuzzy c-Means Clustering Algorithm
    Himmelspach, Ludmila
    Conrad, Stefan
    SCALABLE UNCERTAINTY MANAGEMENT, SUM 2016, 2016, 9858 : 338 - 344
  • [8] Possibilistic and fuzzy c-means clustering with weighted objects
    Miyamoto, Sadaaki
    Inokuchi, Ryo
    Kuroda, Youhei
    2006 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2006, : 869 - +
  • [9] A Weight Possibilistic Fuzzy C-Means Clustering Algorithm
    Chen, Jiashun
    Zhang, Hao
    Pi, Dechang
    Kantardzic, Mehmed
    Yin, Qi
    Liu, Xin
    SCIENTIFIC PROGRAMMING, 2021, 2021
  • [10] MODIFIED POSSIBILISTIC FUZZY C-MEANS ALGORITHM FOR CLUSTERING INCOMPLETE DATA SETS
    Rustam
    Usman, Koredianto
    Kamaruddin, Mudyawati
    Chamidah, Dina
    Nopendri
    Saleh, Khaerudin
    Eliskar, Yulinda
    Marzuki, Ismail
    ACTA POLYTECHNICA, 2021, 61 (02) : 364 - 377