Higher-order interaction induced chimeralike state in a bipartite network

被引:1
作者
Kar, Rumi [1 ]
Chandrasekar, V. K. [2 ]
Senthilkumar, D., V [1 ]
机构
[1] Indian Inst Sci Educ & Res, Sch Phys, Thiruvananthapuram 695551, Kerala, India
[2] SASTRA Deemed Univ, Ctr Nonlinear Sci & Engn, Sch Elect & Elect Engn, Dept Phys, Thanjavur 613401, Tamil Nadu, India
关键词
SYNCHRONIZATION; PATTERNS;
D O I
10.1103/PhysRevE.110.034205
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We report higher-order coupling induced stable chimeralike state in a bipartite network of coupled phase oscillators without any time-delay in the coupling. We show that the higher-order interaction breaks the symmetry of the homogeneous synchronized state to facilitate the manifestation of symmetry breaking chimeralike state. In particular, such symmetry breaking manifests only when the pairwise interaction is attractive and higher-order interaction is repulsive, and vice versa. Further, we also demonstrate the increased degree of heterogeneity promotes homogeneous symmetric states in the phase diagram by suppressing the asymmetric chimeralike state. We deduce the low-dimensional evolution equations for the macroscopic order parameters using Ott-Antonsen ansatz and obtain the bifurcation curves from them using the software XPPAUT, which agrees very well with the simulation results. We also deduce the analytical stability conditions for the incoherent state, in-phase and out-of-phase synchronized states, which match with the bifurcation curves.
引用
收藏
页数:10
相关论文
共 81 条
[1]  
Ablowitz M., 2003, Complex Variables: Introduction and Applications
[2]   Solvable model for chimera states of coupled oscillators [J].
Abrams, Daniel M. ;
Mirollo, Rennie ;
Strogatz, Steven H. ;
Wiley, Daniel A. .
PHYSICAL REVIEW LETTERS, 2008, 101 (08)
[3]   Chimera states for coupled oscillators [J].
Abrams, DM ;
Strogatz, SH .
PHYSICAL REVIEW LETTERS, 2004, 93 (17) :174102-1
[4]   Stimulus classification using chimera-like states in a spiking neural network [J].
Andreev, Andrey, V ;
Ivanchenko, Mikhail, V ;
Pisarchik, Alexander N. ;
Hramov, Alexander E. .
CHAOS SOLITONS & FRACTALS, 2020, 139
[5]   Chimera states in multi-strain epidemic models with temporary immunity [J].
Bauer, Larissa ;
Bassett, Jason ;
Hovel, Philipp ;
Kyrychko, Yuliya N. ;
Blyuss, Konstantin B. .
CHAOS, 2017, 27 (11)
[6]   Chimera states in bursting neurons [J].
Bera, Bidesh K. ;
Ghosh, Dibakar ;
Lakshmanan, M. .
PHYSICAL REVIEW E, 2016, 93 (01)
[7]   Heteroclinic Dynamics of Localized Frequency Synchrony: Heteroclinic Cycles for Small Populations [J].
Bick, Christian .
JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (06) :2547-2570
[8]   Heteroclinic switching between chimeras [J].
Bick, Christian .
PHYSICAL REVIEW E, 2018, 97 (05)
[9]   The structure and dynamics of networks with higher order interactions [J].
Boccaletti, S. ;
De Lellis, P. ;
del Genio, C. I. ;
Alfaro-Bittner, K. ;
Criado, R. ;
Jalan, S. ;
Romance, M. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2023, 1018 :1-64
[10]   Amplitude-phase coupling drives chimera states in globally coupled laser networks [J].
Boehm, Fabian ;
Zakharova, Anna ;
Schoell, Eckehard ;
Luedge, Kathy .
PHYSICAL REVIEW E, 2015, 91 (04)