Expressive feature representation pyramid network for pulmonary nodule detection

被引:0
作者
Zhang, Haochen [1 ,2 ,3 ]
Zhang, Shuai [1 ,2 ,3 ]
Xing, Lipeng [1 ,2 ,3 ]
Wang, Qingzhao [1 ,2 ,3 ]
Fan, Ruiyang [1 ,2 ,3 ]
机构
[1] Hebei Univ Technol, Sch Hlth Sci & Biomed Engn, State Key Lab Reliabil & Intelligence Elect Equipm, Tianjin 300130, Peoples R China
[2] Hebei Univ Technol, Tianjin Key Lab Bioelect & Intelligent Hlth, Tianjin 300130, Peoples R China
[3] Hebei Univ Technol, Key Lab Electromagnet Field & Elect Apparat Reliab, Tianjin 300130, Peoples R China
基金
中国国家自然科学基金;
关键词
Pulmonary nodule detection; Context enhancement connection; Adaptive feature enhancement; Channel attention feature refinement; IMAGES;
D O I
10.1007/s00530-024-01532-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lung cancer has the highest fatality rate among all types of cancers. The detection of pulmonary nodules serves as the primary means for early diagnosis, utilizing deep learning models for pulmonary nodule detection can improve the accuracy and efficiency of detection. However, existing feature extraction networks fail to capture precise details and shape characteristics of pulmonary nodules, and they also lack sufficient multi-scale fusion. Therefore, we propose the expressive feature representation pyramid (EFRP) for pulmonary nodule detection. The Context Enhancement Connection module generates more discriminative features by performing three scales of context feature extraction through different paths and utilizes rich local information and global contextual information to enhance feature representation. The Adaptive Feature Enhancement module dynamically adjusts the receptive field size and generates multi-scale feature layers with enhanced features. The Channel Attention Feature Refinement module enhances local interactions between different channels to alleviate the mixed effects caused by the fusion process, thereby increasing the robustness of the model. Through extensive experiments on three different publicly available pulmonary nodule datasets, the results demonstrate EFRP not only ensure precision but also reduce the occurrence of missed detections, effectively enhancing the overall detection performance of pulmonary nodules.
引用
收藏
页数:18
相关论文
共 56 条
  • [1] Ahmed I., 2022, IEEE/ACM Transactions on Computational Biology and Bioinformatics
  • [2] Lung cancer classification and identification framework with automatic nodule segmentation screening using machine learning
    Alshayeji, Mohammad H.
    Abed, Sa'ed
    [J]. APPLIED INTELLIGENCE, 2023, 53 (16) : 19724 - 19741
  • [3] Cascade R-CNN: Delving into High Quality Object Detection
    Cai, Zhaowei
    Vasconcelos, Nuno
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 6154 - 6162
  • [4] A survey on deep learning applied to medical images: from simple artificial neural networks to generative models
    Celard, P.
    Iglesias, E. L.
    Sorribes-Fdez, J. M.
    Romero, R.
    Vieira, A. Seara
    Borrajo, L.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2023, 35 (03) : 2291 - 2323
  • [5] LGDNet: local feature coupling global representations network for pulmonary nodules detection
    Chi, Jianning
    Zhao, Jin
    Wang, Siqi
    Yu, Xiaosheng
    Wu, Chengdong
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2024, 62 (07) : 1991 - 2004
  • [6] Deformable Convolutional Networks
    Dai, Jifeng
    Qi, Haozhi
    Xiong, Yuwen
    Li, Yi
    Zhang, Guodong
    Hu, Han
    Wei, Yichen
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 764 - 773
  • [7] OPERATING CHARACTERISTICS, SIGNAL DETECTABILITY, AND METHOD OF FREE RESPONSE
    EGAN, JP
    SCHULMAN, AI
    GREENBERG, GZ
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1961, 33 (08) : 993 - &
  • [8] Sixty Years of CA: A Cancer Journal for Clinicians
    Gansler, Ted
    Ganz, Patricia A.
    Grant, Marcia
    Greene, Frederick L.
    Johnstone, Peter
    Mahoney, Martin
    Newman, Lisa A.
    Oh, William K.
    Thomas, Charles R., Jr.
    Thun, Michael J.
    Vickers, Andrew J.
    Wender, Richard C.
    Brawley, Otis Webb
    [J]. CA-A CANCER JOURNAL FOR CLINICIANS, 2010, 60 (06) : 345 - 350
  • [9] Fast R-CNN
    Girshick, Ross
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 1440 - 1448
  • [10] A survey of computer-aided diagnosis of lung nodules from CT scans using deep learning
    Gu, Yu
    Chi, Jingqian
    Liu, Jiaqi
    Yang, Lidong
    Zhang, Baohua
    Yu, Dahua
    Zhao, Ying
    Lu, Xiaoqi
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 137